Abstract

Producer gas from biomass gasification is a feasible supplementary source to overcome the shortage of energy supply. However, the relatively high CO content and low heating value greatly restrict raw biomass producer gas for extensive application. The technical combination of shift-methanation reaction and CO2 adsorption is proved to be an effective upgrading method. Different from the conventional tandem way of connecting shift-methanation and CO2 adsorption, this work first attempts to integrate the two units into a fixed-bed reactor to form a cooperative symbiotic relationship. The relay upgrading process of biomass producer gas is numerically investigated over Ni-based catalyst and mesoporous carbon adsorbent using computational fluid dynamics method. It is found that the CO content can be effectively reduced from 30.8% to below 5% and lower heating value on wet basis can be increased from 6.5 MJ/Nm3 to over 10 MJ/Nm3. The influence of catalyst and adsorbent bed volume on the composition of product gas is evaluated. Meanwhile, the effect of catalyst and adsorbent bed gap is also analyzed. Given the similarity of catalyst and adsorbent bed, the impact of their sequence on the upgrading performance is discussed. At last, for continuous run, a regeneration cycle involving reaction–adsorption coupled with N2 purge is designed and the cycle simulation is conducted to better understand the flow behavior and reaction/adsorption characteristic.

References

1.
Mallapaty
,
S.
,
2020
, “
How China Could Be Carbon Neutral by Mid-Century
,”
Nature
,
586
(
7830
), pp.
482
483
.
2.
Ilbas
,
M.
,
Antari
,
L. O. A.
, and
Sahin
,
M.
,
2022
, “
Biogas Production From Domestic Resources as an Alternative Energy Source: A Comprehensive Feasibility Study
,”
Int. J. Energy Clean Environ.
,
23
(
1
), pp.
97
107
.
3.
Dashtestani
,
F.
,
Nusheh
,
M.
,
Siriwongrungson
,
V.
,
Hongrapipat
,
J.
,
Materic
,
V.
, and
Pang
,
S.
,
2021
, “
Effect of H2S and NH3 in Biomass Gasification Producer Gas on CO2 Capture Performance of an Innovative CaO and Fe2O3 Based Sorbent
,”
Fuel
,
295
, p.
120586
.
4.
Kashyap
,
D.
,
Das
,
S.
, and
Kalita
,
P.
,
2021
, “
Exploring the Efficiency and Pollutant Emission of a Dual Fuel CI Engine Using Biodiesel and Producer Gas: An Optimization Approach Using Response Surface Methodology
,”
Sci. Total Environ.
,
773
, p.
145633
.
5.
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2021
, “
Green Energy Recovery From Waste in Thailand: Current Situation and Perspectives
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
103
122
.
6.
Shahabuddin
,
M.
,
Kibria
,
M. A.
, and
Bhattacharya
,
S.
,
2021
, “
Effect of Pore Diffusion on the Gasification Characteristics of Coal Char Under CO2 Atmosphere
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
85
102
.
7.
Hanchate
,
N.
,
Ramani
,
S.
,
Mathpati
,
C. S.
, and
Dalvi
,
V. H.
,
2021
, “
Biomass Gasification Using Dual Fluidized Bed Gasification Systems: A Review
,”
J. Clean. Prod.
,
280
, p.
123148
.
8.
Parvez
,
A. M.
,
Hafner
,
S.
,
Hornberger
,
M.
,
Schmid
,
M.
, and
Scheffknecht
,
G.
,
2021
, “
Sorption Enhanced Gasification (SEG) of Biomass for Tailored Syngas Production With In-Situ CO2 Capture: Current Status, Process Scale-Up Experiences and Outlook
,”
Renewable Sustainable Energy Rev.
,
141
, p.
110756
.
9.
Guan
,
H.
,
Lin
,
J.
,
Qiao
,
B.
,
Miao
,
S.
,
Wang
,
A.
,
Wang
,
X.
, and
Zhang
,
T.
,
2017
, “
Enhanced Performance of Rh1/TiO2 Catalyst Without Methanation in Water-Gas Shift Reaction
,”
AIChE J.
,
63
(
6
), p.
2081
.
10.
Sun
,
L.
,
Luo
,
K.
, and
Fan
,
J.
,
2018
, “
Numerical Investigation on Methanation Kinetic and Flow Behavior in Full-Loop Fluidized Bed Reactor
,”
Fuel
,
231
, pp.
85
93
.
11.
Hongmanorom
,
P.
,
Ashok
,
J.
,
Das
,
S.
,
Dewangan
,
N.
,
Bian
,
Z.
,
Mitchell
,
G.
,
Xi
,
S.
,
Borgna
,
A.
, and
Kawi
,
S.
,
2020
, “
Zr-Ce-Incorporated Ni/SBA-15 Catalyst for High-Temperature Water Gas Shift Reaction: Methane Suppression by Incorporated Zr and Ce
,”
J. Catal.
,
387
, pp.
47
61
.
12.
Damma
,
D.
,
Jampaiah
,
D.
,
Welton
,
A.
,
Boolchand
,
P.
,
Arvanitis
,
A.
,
Dong
,
J.
, and
Smirniotis
,
P. G.
,
2020
, “
Effect of Nb Modification on the Structural and Catalytic Property of Fe/Nb/M (M = Mn, Co, Ni, and Cu) Catalyst for High Temperature Water-Gas Shift Reaction
,”
Catal. Today
,
355
, pp.
921
931
.
13.
Wang
,
C.
,
He
,
S.
,
Li
,
S.
, and
Gao
,
L.
,
2021
, “
Water Saving Potential of Coal-to-Synthetic Natural Gas
,”
J. Clean. Prod.
,
280
, p.
124326
.
14.
Barbuzza
,
E.
,
Buceti
,
G.
,
Pozio
,
A.
,
Santarelli
,
M.
, and
Tosti
,
S.
,
2019
, “
Gasification of Wood Biomass With Renewable Hydrogen for the Production of Synthetic Natural Gas
,”
Fuel
,
242
, pp.
520
531
.
15.
Zhang
,
H.
,
Wang
,
L.
,
Van Herle
,
J.
,
Maréchal
,
F.
, and
Desideri
,
U.
,
2020
, “
Techno-economic Comparison of Green Ammonia Production Processes
,”
Appl. Energy
,
259
, p.
114135
.
16.
Salcedo
,
A.
, and
Irigoyen
,
B.
,
2021
, “
DFT Insights Into Structural Effects of Ni-Cu/CeO2 Catalysts for CO Selective Reaction Towards Water-Gas Shift
,”
Phys. Chem. Chem. Phys.
,
23
(
6
), pp.
3826
3836
.
17.
Ma
,
S.
,
Tan
,
Y.
, and
Han
,
Y.
,
2011
, “
Water-Gas Shift Coupling with Methanation Over MOx Modified Nanorod-NiO/γ-Al2O3 Catalysts
,”
J. Ind. Eng. Chem.
,
17
(
4
), pp.
723
726
.
18.
Dong
,
X.
,
Song
,
M.
,
Jin
,
B.
,
Zhou
,
Z.
, and
Yang
,
X.
,
2017
, “
The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr) Bicomponent Catalysts on Partial Methanation Coupling With Water gas Shift Under Low H2/CO Conditions
,”
Catalysts
,
7
(
12
), p.
51
.
19.
Charles
,
W.
,
Cord-Ruwisch
,
R.
, and
Ho
,
G.
,
2021
, “
Novel Microbial-Electrochemical Filter With a Computer-Feedback pH Control Strategy for Upgrading Biogas Into Biomethane
,”
Bioresource Technol.
,
332
, p.
125137
.
20.
Wang
,
D.
,
Li
,
S.
,
He
,
S.
, and
Gao
,
L.
,
2019
, “
Coal to Substitute Natural gas Based on Combined Coal-Steam Gasification and One-Step Methanation
,”
Appl. Energy
,
240
, pp.
851
859
.
21.
Han
,
S. J.
, and
Wee
,
J. H.
,
2021
, “
Comparison of CO2 Absorption Performance Between Methyl-di-Ethanolamine and Tri-Ethanolamine Solution Systems and Its Analysis in Terms of Amine Molecules
,”
Greenhouse Gas Sci. Technol.
,
11
(
3
), pp.
445
460
.
22.
Nie
,
L.
,
Mu
,
Y.
,
Jin
,
J.
,
Chen
,
J.
, and
Mi
,
J.
,
2018
, “
Recent Developments and Consideration Issues in Solid Adsorbents for CO2 Capture From Flue Gas
,”
Chin. J. Chem. Eng.
,
26
(
11
), pp.
2303
2317
.
23.
Lebarbier
,
V. M.
,
Dagle
,
R. A.
,
Kovarik
,
L.
,
Albrecht
,
K. O.
,
Li
,
X.
,
Li
,
L.
,
Taylor
,
C. E.
,
Bao
,
X.
, and
Wang
,
Y.
,
2014
, “
Sorption-Enhanced Synthetic Natural Gas (SNG) Production From Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture
,”
Appl. Catal. B
,
144
, pp.
223
232
.
24.
Hou
,
B.
,
Huang
,
Y.
,
Wang
,
X.
,
Yang
,
X.
,
Duan
,
H.
, and
Zhang
,
T.
,
2016
, “
Optimization and Simulation of the Sabatier Reaction Process in a Packed Bed
,”
AIChE J.
,
62
(
8
), pp.
2879
2892
.
25.
Chen
,
Q.
,
Rosner
,
F.
,
Rao
,
A.
,
Samuelsen
,
S.
,
Bonnema
,
M.
,
Jayaraman
,
A.
, and
Alptekin
,
G.
,
2020
, “
Simulation of Elevated Temperature Combined Water Gas Shift and Solid Sorbent CO2 Capture for Pre-Combustion Applications Using Computational Fluid Dynamics
,”
Appl. Energy
,
267
, p.
114878
.
26.
Shen
,
W.
,
Zhang
,
Y.
,
Zhao
,
L.
,
Ye
,
Y.
, and
Tursun
,
Y.
,
2021
, “
Micro-Scale Simulation and Intensification of Complex Sabatier Reaction System in Cylindrical Catalyst bed
,”
Fuel
,
287
, p.
119399
.
27.
Qasem
,
N. A. A.
,
Ben-Mansour
,
R.
, and
Habib
,
M. A.
,
2018
, “
An Efficient CO2 Adsorptive Storage Using MOF-5 and MOF-177
,”
Appl. Energy
,
210
, pp.
317
326
.
28.
Scharl
,
V.
,
Fischer
,
F.
,
Herrmann
,
S.
,
Fendt
,
S.
, and
Spliethoff
,
H.
,
2020
, “
Applying Reaction Kinetics to Pseudohomogeneous Methanation Modeling in Fixed-Bed Reactors
,”
Chem. Eng. Technol.
,
43
(
6
), pp.
1224
1233
.
29.
Palma
,
V.
,
Pisano
,
D.
, and
Martino
,
M.
,
2018
, “
CFD Modeling of the Influence of Carrier Thermal Conductivity for Structured Catalysts in the WGS Reaction
,”
Chem. Eng. Sci.
,
178
, pp.
1
11
.
30.
Pei
,
H.
,
Jin
,
B.
, and
Huang
,
Y.
,
2020
, “
Quantitative Analysis of Mass and Energy Flow in Rice Straw Gasification Based on Mass and Carbon Balance
,”
Renewable Energy
,
161
, pp.
846
857
.
31.
Dong
,
X.
,
Jin
,
B.
,
Sun
,
Y.
, and
Yu
,
L.
,
2018
, “
Urban Gas Production From Low H2/CO Biogas Using Re-Promoted Ni Catalysts Supported on Modified Manganese Sand
,”
Fuel
,
220
, pp.
60
71
.
32.
Chen
,
Q.
,
Rosner
,
F.
,
Rao
,
A.
,
Samuelsen
,
S.
,
Jayaraman
,
A.
, and
Alptekin
,
G.
,
2019
, “
Simulation of Elevated Temperature Solid Sorbent CO2 Capture for Pre-combustion Applications Using Computational Fluid Dynamics
,”
Appl. Energy
,
237
, pp.
314
325
.
33.
Vera
,
M.
,
Juela
,
D. M.
,
Cruzat
,
C.
, and
Vanegas
,
E.
,
2021
, “
Modeling and Computational Fluid Dynamic Simulation of Acetaminophen Adsorption Using Sugarcane Bagasse
,”
J. Environ. Chem. Eng.
,
9
(
2
), p.
105056
.
34.
Turgut
,
S. S.
,
Feyissa
,
A. H.
,
Baltacıoğlu
,
C.
,
Küçüköner
,
E.
, and
Karacabey
,
E.
,
2020
, “
Extraction Simulation of Porous Media by CFD: Recovery of Trans-Resveratrol From Grape Cane by Pressurised Low Polarity Water System
,”
Chem. Eng. Process.
,
148
, p.
107779
.
35.
Allam
,
S.
, and
Elsaid
,
A. M.
,
2020
, “
Parametric Study on Vehicle Fuel Economy and Optimization Criteria of the Pleated Air Filter Designs to Improve the Performance of an I.C Diesel Engine: Experimental and CFD Approaches
,”
Sep. Purif. Technol.
,
241
, p.
116680
.
36.
Moghadasi
,
H.
,
Aminian
,
E.
,
Saffari
,
H.
,
Mahjoorghani
,
M.
, and
Emamifar
,
A.
,
2020
, “
Numerical Analysis on Laminar Forced Convection Improvement of Hybrid Nanofluid Within a U-Bend Pipe in Porous Media
,”
Int. J. Mech. Sci.
,
179
, p.
105659
.
37.
Lebedev
,
A.
,
Lovskaya
,
D.
, and
Menshutina
,
N.
,
2020
, “
Experimental Investigation and CFD Modeling of Supercritical Adsorption Process
,”
Polymers
,
12
(
9
), p.
1957
.
38.
Rönsch
,
S.
,
Köchermann
,
J.
,
Schneider
,
J.
, and
Matthischke
,
S.
,
2016
, “
Global Reaction Kinetics of CO and CO2 Methanation for Dynamic Process Modeling
,”
Chem. Eng. Technol.
,
39
(
2
), pp.
208
218
.
39.
Al Mesfer
,
M. K.
,
Amari
,
A.
,
Danish
,
M.
,
Al Alwan
,
B. A.
, and
Shah
,
M.
,
2020
, “
Simulation Study of Fixed-Bed CO2 Adsorption From CO2/N2 Mixture Using Activated Carbon
,”
Chem. Eng. Commun.
,
208
(
9
), pp.
1358
1367
.
40.
Gan
,
F.
,
Wang
,
B.
,
Jin
,
Z.
,
Xie
,
L.
,
Dai
,
Z.
,
Zhou
,
T.
, and
Jiang
,
X.
,
2021
, “
From Typical Silicon-Rich Biomass to Porous Carbon-Zeolite Composite: A Sustainable Approach for Efficient Adsorption of CO2
,”
Sci. Total Environ.
,
768
, p.
144529
.
41.
Yao
,
Y.
,
Yu
,
F.
,
Li
,
J.
,
Li
,
J.
,
Li
,
Y.
,
Wang
,
Z.
,
Zhu
,
M.
,
Shi
,
Y.
,
Dai
,
B.
, and
Guo
,
X.
,
2019
, “
Two-dimensional NiAl Layered Double Oxides as Non-Noble Metal Catalysts for Enhanced CO Methanation Performance at Low Temperature
,”
Fuel
,
255
, p.
115770
.
42.
Chidambaram
,
A.
,
Le
,
D. H.
,
Navarro
,
J. A. R.
, and
Stylianou
,
K. C.
,
2021
, “
Robust Metal-Organic Frameworks for Dry and Wet Biogas Upgrading
,”
Appl. Mater. Today
,
22
, p.
100933
.
43.
Kulkarni
,
M. B.
, and
Ghanegaonkar
,
P. M.
,
2019
, “
Methane Enrichment of Biogas Produced From Floral Waste: A Potential Energy Source for Rural India
,”
Energy Sources Part A
,
41
(
22
), pp.
2757
2768
.
44.
Gautier
,
R.
,
Dbouk
,
T.
,
Harion
,
J. L.
,
Hamon
,
L.
, and
Pré
,
P.
,
2018
, “
Pressure-Swing-Adsorption of Gaseous Mixture in Isotropic Porous Medium: Numerical Sensitivity Analysis in CFD
,”
Chem. Eng. Res. Des.
,
129
, pp.
314
326
.
45.
Świeboda
,
T.
,
Krzyżyńska
,
R.
,
Bryszewska-Mazurek
,
A.
,
Mazurek
,
W.
, and
Wysocka
,
A.
,
2021
, “
A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-bed Reactors With Low Tube-to-Particle Diameter Ratio
,”
Energies
,
14
(
3
), p.
784
.
46.
Ngo
,
S. I.
,
Lim
,
Y.
,
Lee
,
D.
, and
Seo
,
M. W.
,
2021
, “
Flow Behavior and Heat Transfer in Bubbling Fluidized-Bed With Immersed Heat Exchange Tubes for CO2 Methanation
,”
Powder Technol.
,
380
, pp.
462
474
.
47.
Gautam
, and
Sahoo
,
S.
,
2021
, “
Effects of Geometric and Heat Transfer Parameters on Adsorption-Desorption Characteristics of CO2-Activated Carbon Pair
,”
Clean Technol. Environ. Policy
,
23
(
4
), pp.
1065
1085
.
48.
Guffanti
,
S.
,
Visconti
,
C. G.
, and
Groppi
,
G.
,
2021
, “
Model Analysis of the Role of Kinetics, Adsorption Capacity, and Heat and Mass Transfer Effects in Sorption Enhanced Dimethyl Ether Synthesis
,”
Ind. Eng. Chem. Res.
,
60
(
18
), pp.
6767
6783
.
49.
Nair
,
S.
, and
Raghavan
,
R.
,
2021
, “
A Kinetic Study of CO2 Sorption/Desorption of Lithium Silicate Synthesized Through a Ball Milling Method
,”
Thermochim. Acta
,
699
, p.
178918
.
50.
Fan
,
W.
,
Gao
,
W.
,
Huang
,
L.
,
Lu
,
S.
,
Song
,
C.
,
Reina
,
T. R.
,
Louis
,
B.
, and
Wang
,
Q.
,
2021
, “
Scalable Synthesis of KNaTiO3-Based High-Temperature CO2 Capture Material From High Titanium Slag: CO2 Uptake, Kinetics, Regenerability and Mechanism Study
,”
J. CO2 Util.
,
49
, p.
101578
.
51.
Sun
,
P.
,
Lai
,
Y.
,
Cheng
,
X.
, and
Wang
,
Z.
,
2021
, “
SO2 Rapid Adsorption and Desorption Over Activated Semi Coke in a Rotary Reactor
,”
J. Energy Inst.
,
96
, pp.
158
167
.
You do not currently have access to this content.