Abstract

With the wide application of extended reach wells and horizontal wells, the geological conditions faced during the drilling process have become increasingly complicated, and the resulting wellbole collapse problem has become serious. Based on an L-1 horizontal well, this study provides a method for calculating collapse pressure considering the influence of formation hydration. This method is used to obtain the stress distribution around the well and collapse situation at 4100 m underground. The wellbore stability can be evaluated by the method. The factors affecting the stress and collapse of the well are analyzed by changing the construction parameters and geological parameters. Studies have shown that the rock near the well has collapsed to a certain extent and shale hydration increases the formation Poisson's ratio, resulting in more serious collapse. The study also found that hydration, drilling fluid density, and borehole size have the greatest impact on the stability of the borehole wall, followed by the well deviation angle, and the bedding angle the least. Carefully exploring the situation of the shale gas reservoir in the drilling design stages, considering the impact of hydration, and selecting appropriate construction parameters are necessary to avoid the collapse of the shaft wall and affect the shale gas production process. This study can provide a reference for ensuring the stability of the wellbore.

References

1.
Bahrami
,
B.
,
Sadatshojaie
,
A.
, and
Wood
,
D. A.
,
2020
, “
Assessing Wellbore Stability With a Modified Lade Failure Criterion
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083004
.
2.
Bautmans
,
P.
,
Fjær
,
E.
, and
Horsrud
,
P.
,
2018
, “
The Effect of Weakness Patches on Wellbore Stability in Anisotropic Media
,”
Int. J. Rock Mech. Min. Sci.
,
104
, pp.
165
173
.
3.
Shi
,
X. C.
,
Zhuo
,
X.
,
Xiao
,
Y.
,
Guo
,
B. Y.
,
Zhu
,
C.
, and
Li
,
J. X.
,
2020
, “
Wellbore Stability in Layered Rocks: A Comparative Study of Strength Criteria
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063003
.
4.
Zhang
,
Q. G.
,
Fan
,
X. Y.
,
Chen
,
P.
,
Ma
,
T. S.
, and
Zeng
,
F. T.
,
2020
, “
Geomechanical Behaviors of Shale After Water Absorption Considering the Combined Effect of Anisotropy and Hydration
,”
Eng. Geol.
,
269
, p.
105547
.
5.
Agbasi
,
O. E.
,
Sen
,
S.
,
Inyang
,
N. J.
, and
Etuk
,
S. E.
,
2021
, “
Assessment of Pore Pressure, Wellbore Failure and Reservoir Stability in the Gabo Field, Niger Delta, Nigeria—Implications for Drilling and Reservoir Management
,”
J. Afr. Earth Sci.
,
173
, p.
104038
.
6.
Chen
,
X. Y.
,
Gao
,
D. L.
,
Yang
,
J.
,
Luo
,
M.
,
Feng
,
Y. C.
, and
Li
,
X.
,
2018
, “
A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092903
.
7.
Mahmmud
,
B. S.
,
Farkha
,
S. A.
,
Jaf
,
P. T. M.
,
Nazhat
,
S. B.
, and
Salam
,
S. A.
,
2021
, “
Effect of Hybrid Water-Based mud on the Improvement of Wellbore Stability: Kolosh Formation in Iraqi Kurdistan Region
,”
Upstream Oil Gas Technol.
,
7
, p.
100046
.
8.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2019
, “
Stability Analysis of Highly Deviated Boreholes to Minimize Drilling Risks and Nonproductive Time
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082904
.
9.
Yan
,
C. L.
,
Deng
,
J. G.
,
Lai
,
X. D.
,
Li
,
X. R.
, and
Feng
,
Y. C.
,
2015
, “
Borehole Stability Analysis in Deepwater Shallow Sediments
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012901
.
10.
Duan
,
K.
,
Wu
,
W.
, and
Kwok
,
C. Y.
,
2018
, “
Discrete Element Modelling of Stress-Induced Instability of Directional Drilling Boreholes in Anisotropic Rock
,”
Tunn. Undergr. Space Technol.
,
81
, pp.
55
67
.
11.
He
,
W. H.
,
Hayatdavoudi
,
A.
,
Chen
,
K. Y.
,
Sawant
,
K.
,
Zhang
,
Q.
, and
Zhang
,
C.
,
2019
, “
Enhancement of Plastering Effect on Strengthening Wellbore by Optimizing Particle Size Distribution of Wellbore Strengthening Materials
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122905
.
12.
Aslannezhad
,
M.
,
Keshavarz
,
A.
, and
Kalantariasl
,
A.
,
2020
, “
Evaluation of Mechanical, Chemical, and Thermal Effects on Wellbore Stability Using Different Rock Failure Criteria
,”
J. Nat. Gas Sci. Eng.
,
78
, p.
103276
.
13.
Mansourizadeh
,
M.
,
Jamshidian
,
M.
,
Bazargan
,
P.
, and
Mohammadzadeh
,
O.
,
2016
, “
Wellbore Stability Analysis and Breakout Pressure Prediction in Vertical and Deviated Boreholes Using Failure Criteria—A Case Study
,”
J. Petrol. Sci. Eng.
,
145
, pp.
482
492
.
14.
Meng
,
M.
,
Baldino
,
S.
,
Miska
,
S. Z.
, and
Takach
,
N.
,
2018
, “
Wellbore Stability in Naturally Fractured Formations Featuring Dual-Porosity/Single-Permeability and Finite Radial Fluid Discharge
,”
J. Petrol. Sci. Eng.
,
174
, pp.
790
803
.
15.
Kadkhodaie
,
A.
,
2021
, “
The Impact of Geomechanical Units (GMUs) Classification on Reducing the Uncertainty of Wellbore Stability Analysis and Safe Mud Window Design
,”
J. Nat. Gas Sci. Eng.
,
91
, p.
103964
.
16.
Ravaji
,
B.
,
Mashadizade
,
S.
, and
Hashemi
,
A.
,
2018
, “
Introducing Optimized Validated Meshing System for Wellbore Stability Analysis Using 3D Finite Element Method
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
74
82
.
17.
Shi
,
X. C.
,
Cai
,
W. Q.
,
Meng
,
Y. F.
,
Li
,
G.
, and
Li
,
J. X.
,
2015
, “
Wellbore Stability Analysis Based on a New Strength Criterion
,”
J. Nat. Gas Sci. Eng.
,
27
(
2
), pp.
1005
1015
.
18.
Prankada
,
M.
,
Yadav
,
K.
, and
Sircar
,
A.
,
2021
, “
Analysis of Wellbore Stability by Pore Pressure Prediction Using Seismic Velocity
,”
Energy Geosci.
,
2
(
04
), pp.
219
228
.
19.
Li
,
X. R.
,
Zhang
,
C. F.
,
Feng
,
Y. C.
,
Wei
,
Y. R.
,
Chen
,
X. P.
,
Weng
,
H. Y.
, and
Deng
,
J. G.
,
2022
, “
An Integrated Geomechanics Approach to Evaluate and Manage Wellbore Stability in a Deep Graben Formation in Tarim Basin
,”
J. Petrol. Sci. Eng.
,
208
(
PA
), p.
109391
.
20.
Cui
,
S.
,
Liu
,
H. B.
,
Meng
,
Y. F.
,
Zhang
,
Y. N.
,
Tao
,
Y.
, and
Zhang
,
X. N.
,
2021
, “
Study on Fracture Occurrence Characteristics and Wellbore Stability of Limestone Formation
,”
J. Petrol. Sci. Eng.
,
204
, p.
108783
.
21.
Ayoub
,
D.
,
Masoud
,
C. S.
,
David
,
A. W.
, and
Hamzeh
,
G.
,
2019
, “
Wellbore Stability Analysis to Determine the Safe mud Weight Window for Sandstone Layers
,”
Petrol. Explor. Dev.
,
46
(
5
), pp.
1031
1038
.
22.
Alkamil
,
E. H. K.
,
Abbood
,
H. R.
,
Flori
,
R. E.
, and
Eckert
,
A.
,
2018
, “
Case Study of Wellbore Stability Evaluation for the Mishrif Formation
,”
Iraq. J. Petrol. Sci. Eng.
,
164
, pp.
663
674
.
23.
Li
,
J.
,
Qiu
,
Z. S.
,
Zhong
,
H. Y.
,
Zhao
,
X.
,
Liu
,
Z. K.
, and
Huang
,
W. A.
,
2022
, “
Effects of Water-Based Drilling Fluid on Properties of Mud Cake and Wellbore Stability
,”
J. Petrol. Sci. Eng.
,
208
(
PD
), p.
109704
.
24.
Liu
,
H. B.
,
Cui
,
S.
,
Meng
,
Y. F.
,
Li
,
Z.
,
Yu
,
X. C.
,
Sun
,
H. R.
,
Zhou
,
Y. X.
, and
Luo
,
Y.
,
2021
, “
Rock Mechanics and Wellbore Stability of Deep Shale During Drilling and Completion Processes
,”
J. Petrol. Sci. Eng.
,
205
, p.
108882
.
25.
Ghasemi
,
A.
,
Jalalifar
,
H.
,
Apourvari
,
S. N.
, and
Sakebi
,
M. R.
,
2019
, “
Mechanistic Study of Improvement of Wellbore Stability in Shale Formations Using a Natural Inhibitor
,”
J. Petrol. Sci. Eng.
,
181
, p.
106222
.
26.
Dokhani
,
V.
,
Yu
,
M. J.
, and
Bloys
,
B.
,
2016
, “
A Wellbore Stability Model for Shale Formations: Accounting for Strength Anisotropy and Fluid Induced Instability
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
174
184
.
27.
Kou
,
Z. H.
,
Zhang
,
D. X.
,
Chen
,
Z. T.
, and
Xie
,
Y. X.
,
2022
, “
Quantitatively Determine CO2 Geosequestration Capacity in Depleted Shale Reservoir: A Model Considering Viscous Flow, Diffusion, and Adsorption
,”
Fuel.
,
309
, p.
122191
.
28.
Zhang
,
L. H.
,
Kou
,
Z. H.
,
Wang
,
H. T.
,
Zhao
,
Y. L.
,
Dejam
,
M.
,
Guo
,
J. J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Petrol. Sci. Eng.
,
166
, pp.
104
120
.
29.
Wang
,
H. T.
,
Kou
,
Z. H.
,
Guo
,
J. J.
, and
Chen
,
Z. T.
,
2021
, “
A Semi-analytical Model for the Transient Pressure Behaviors of a Multiple Fractured Well in a Coal Seam Gas Reservoir
,”
J. Petrol. Sci. Eng.
,
198
, p.
108159
.
30.
Kou
,
Z. H.
,
Wang
,
T. T.
,
Chen
,
Z. T.
, and
Jiang
,
J. C.
,
2021
, “
A Fast and Reliable Methodology to Evaluate Maximum CO2 Storage Capacity of Depleted Coal Seams: A Case Study
,”
Energy.
,
231
, p.
120992
.
31.
VILLABONA-ESTUPIÑAN
,
S.
,
Jorge
,
D. A. R.
,
ABREU
,
C. F. D.
, and
NASCIMENTO
,
R. S. V.
,
2021
, “
Mechanism of Shales Stabilization by Hydrophobized Poly(Ethylene Glycol)/K+ in Water-Base Drilling Fluids
,”
Petrol. Explor. Dev.
,
48
(
3
), pp.
721
731
.
32.
Ding
,
Y.
,
Liu
,
X. J.
, and
Luo
,
P. Y.
,
2020
, “
Investigation on Influence of Drilling Unloading on Wellbore Stability in Clay Shale Formation
,”
Petrol. Sci.
,
17
(
3
), pp.
781
796
.
33.
Liu
,
Z. Y.
,
Chen
,
M.
,
Jin
,
Y.
,
Yang
,
X. T.
,
Lu
,
Y. H.
, and
Xiong
,
Q. Q.
,
2014
, “
Calculation Model for Borehole Collapse Volume in Horizontal Openhole in Formation With Multiple Weak Planes
,”
Petrol. Explor. Dev.
,
41
(
1
), pp.
113
119
.
34.
Zhang
,
W. D.
,
Gao
,
J. J.
,
Lan
,
K.
,
Liu
,
X. H.
,
Feng
,
G. T.
, and
Ma
,
Q. T.
,
2015
, “
Analysis of Borehole Collapse and Fracture Initiation Positions and Drilling Trajectory Optimization
,”
J. Petrol. Sci. Eng.
,
129
, pp.
29
39
.
35.
Ma
,
T. S.
,
Zhang
,
Y.
,
Qiu
,
Y.
,
Liu
,
Y.
, and
Li
,
Z. L.
,
2022
, “
Effect of Parameter Correlation on Risk Analysis of Wellbore Instability in Deep Igneous Formations
,”
J. Petrol. Sci. Eng.
,
208
(
PC
), p.
109521
.
36.
Ding
,
L. Q.
,
Wang
,
Z. Q.
,
Liu
,
B. L.
, and
Lv
,
J. G.
,
2019
, “
Assessing Borehole Stability in Bedding-Parallel Strata: Validity of Three Models
,”
J. Petrol. Sci. Eng.
,
173
, pp.
690
704
.
37.
Tan
,
Y. Y.
,
2014
,
Research Shale Hydration Effects on Wellbore Stability: [D]
,
Xi’an Shiyou University
,
Xi’an, China
.
You do not currently have access to this content.