Abstract

Unburnt hydrocarbon emissions and combustion instability are severe issues in diesel engines during cold starting. This simulation study aims to provide insights for improving the cold-start issues of diesel engines. Computational analysis of the diesel spray and evolution of plumes from a 7-hole injector was done in a constant volume quiescent spray chamber for analyzing the effect of fuel temperature. This study was based on a comprehensive numerical analysis using CONVERGE computational fluid dynamics (CFD) software, where an Eulerian–Lagrangian approach was adopted in a large eddy simulation (LES) framework. Diesel engine-like cold-start conditions were replicated by reducing the fuel temperatures to 250 K to simulate freezing conditions outside. This computational study compares fuel sprays at 250 K with 312 K into a relatively colder ambient temperature of 626 K vis-a-vis high-temperature diesel engine-like ambient conditions with ambient temperature to 961 K to investigate the degree of spray characteristics improvements due to increased fuel temperature. The predicted liquid spray penetration obtained by simulations agreed well with the experimental data for fuel temperatures injected into the ambient at cold (626 K) and hot (961 K) engine-like ambient conditions. The available empirical relations justify the simulation results of this study. Results showed that fuel and ambient temperatures significantly affected the spray atomization and evaporation characteristics. A higher reduction in liquid penetration length was found with increasing fuel temperature at hot ambient conditions. Increasing ambient temperature also improved the evaporation characteristics of the spray droplets. Vapor formation for the same increase in fuel temperature was higher at hot ambient temperature than the cold. Fuel temperature had a major role in the spray atomization process, whereas the ambient temperature affected the spray evaporation process. However, fuel and ambient temperatures had only a minor effect on the distribution of total kinetic energy (TKE). Among all test conditions, a fuel temperature of 312 K sprayed in hot ambient conditions showed superior fuel spray atomization and evaporation. Hence, to tackle the cold-start of diesel engines, measures taken to increase the fuel and ambient temperatures simultaneously proved to be useful.

References

1.
Xu
,
L.
,
Bai
,
X.-S.
,
Jia
,
M.
,
Qian
,
Y.
,
Qiao
,
X.
, and
Lu
,
X.
,
2018
, “
Experimental and Modelling Study of Liquid Fuel Injection and Combustion in Diesel Engines With a Common Rail Injection System
,”
Appl. Energy
,
230
, pp.
287
304
.
2.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
.
3.
Wang
,
Z.
,
Li
,
Y.
,
Wang
,
C.
,
Xu
,
H.
, and
Wyszynski
,
M. L.
,
2016
, “
Experimental Study on Primary Breakup of Diesel Spray Under Cold Start Conditions
,”
Fuel
,
183
, pp.
617
626
.
4.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2020
, “
Microscopic Spray Characteristics of Biodiesels Derived From Karanja, Jatropha, and Waste Cooking Oils
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
124501
.
5.
Zhang
,
Y.
,
Voice
,
A.
,
Pei
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2018
, “
A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102202
.
6.
Albernaz
,
D. L.
,
Do-Quang
,
M.
,
Hermanson
,
J. C.
, and
Amberg
,
G.
,
2017
, “
Droplet Deformation and Heat Transfer in Isotropic Turbulence
,”
J. Fluid Mech.
,
820
, pp.
61
85
.
7.
Elhalwagy
,
M.
, and
Zhang
,
C.
,
2019
, “
A Proposed Biodiesel Combustion Kinetics Based on the Computational Fluid Dynamics Results in an Ignition Quality Tester
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082204
.
8.
Carrier
,
O.
,
Shahidzadeh-Bonn
,
N.
,
Zargar
,
R.
,
Aytouna
,
M.
,
Habibi
,
M.
,
Eggers
,
J.
, and
Bonn
,
D.
,
2016
, “
Evaporation of Water: Evaporation Rate and Collective Effects
,”
J. Fluid Mech.
,
798
, pp.
774
786
.
9.
Park
,
Y.
,
Hwang
,
J.
,
Bae
,
C.
,
Kim
,
K.
,
Lee
,
J.
, and
Pyo
,
S.
,
2015
, “
Effects of Diesel Fuel Temperature on Fuel Flow and Spray Characteristics
,”
Fuel
,
162
, pp.
1
7
.
10.
Park
,
S. H.
,
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Experimental and Numerical Analysis of Spray-Atomisation Characteristics of Biodiesel Fuel in Various Fuel and Ambient Temperatures Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
960
970
.
11.
Liu
,
F.
,
Zhang
,
Z.
,
Wu
,
H.
,
Li
,
Y.
,
Ma
,
Y.
,
Li
,
X.
, and
Du
,
W.
,
2017
, “
An Investigation on a Diesel Jet’s Ignition Characteristics Under Cold-Start Conditions
,”
Appl. Therm. Eng.
,
121
, pp.
511
519
.
12.
Jing
,
D.
,
Zhao
,
H.
,
Li
,
Y.
,
Guo
,
H.
,
Xiao
,
J.
, and
Shuai
,
S.-J.
,
2018
.
Numerical Investigation on the Effect of Fuel Temperature on Spray Collapse and Mixture Formation Characteristics in GDI Engines
. SAE Technical Paper No. 10.4271/2018-01-0311.
13.
Sharma
,
N.
,
Bachalo
,
W. D.
, and
Agarwal
,
A. K.
,
2020
, “
Spray Droplet Size Distribution and Droplet Velocity Measurements in a Firing Optical Engine
,”
Phys. Fluids
,
32
(
2
), p.
023304
.
14.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
15.
Siebers
,
D. L.
,
1998
, “
Liquid-Phase Fuel Penetration in Diesel Sprays
,”
SAE Transactions
, pp.
1205
1227
. https://www.jstor.org/stable/44736606
16.
Hwang
,
J.
,
Park
,
Y.
,
Bae
,
C.
,
Lee
,
J.
, and
Pyo
,
S.
,
2015
, “
Fuel Temperature Influence on Spray and Combustion Characteristics in a Constant Volume Combustion Chamber (CVCC) Under Simulated Engine Operating Conditions
,”
Fuel
,
160
, pp.
424
433
.
17.
Payri
,
R.
,
García-Oliver
,
J. M.
,
Bardi
,
M.
, and
Manin
,
J.
,
2012
, “
Fuel Temperature Influence on Diesel Sprays in Inert and Reacting Conditions
,”
Appl. Therm. Eng.
,
35
, pp.
185
195
.
18.
Andrews
,
M. J.
,
1993
, “
The Large-Scale Fragmentation of the Intact Liquid Core of a Spray Jet
,”
At. Sprays
,
3
(
1
), pp.
29
54
.
19.
Pađen
,
I.
,
Petranović
,
Z.
,
Edelbauer
,
W.
, and
Vujanović
,
M.
,
2021
, “
Numerical Modelling of Spray Secondary Atomisation With the Euler-Eulerian Multi-Fluid Approach
,”
Comput. Fluids
,
222
, pp.
104919
.
20.
Pandal
,
A.
,
Payri
,
R.
,
García-Oliver
,
J. M.
, and
Pastor
,
J. M.
,
2017
, “
Optimisation of Spray Breakup CFD Simulations by Combining Σ-Y Eulerian Atomisation Model With a Response Surface Methodology Under Diesel Engine-Like Conditions (ECN Spray A)
,”
Comput. Fluids
,
156
, pp.
9
20
.
21.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032204
.
22.
Sou
,
A.
,
Biçer
,
B.
, and
Tomiyama
,
A.
,
2014
, “
Numerical Simulation of Incipient Cavitation Flow in a Nozzle of Fuel Injector
,”
Comput. Fluids
,
103
, pp.
42
48
.
23.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
A Study of Grid Resolution and SGS Models for LES Under Non-Reacting Spray Conditions
,”
ILASS Americas, Proceedings of the 25th Annual Conference on Liquid Atomization and Spray Systems
,
Pittsburgh, PA
,
May 21–23
.
24.
Salman
,
H.
, and
Soteriou
,
M.
,
2004
, “
Lagrangian Simulation of Evaporating Droplet Sprays
,”
Phys. Fluids
,
16
(
12
), pp.
4601
4622
.
25.
Reitz
,
R. D.
, and
Bracco
,
F. V.
,
1982
, “
Mechanism of Atomisation of a Liquid Jet
,”
Phys. Fluids
,
25
(
10
), pp.
1730
1742
.
26.
Marmottant
,
P.
, and
Villermaux
,
E.
,
2004
, “
On Spray Formation
,”
J. Fluid Mech.
,
498
, pp.
73
111
.
27.
Hwang
,
S. S.
,
Liu
,
Z.
, and
Reitz
,
R. D.
,
1996
, “
Break-Up Mechanisms and Drag Coefficients of High-Speed Vapourising Liquid Drops
,”
At. Sprays
,
6
(
3
), pp.
353
376
.
28.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large-Eddy Simulation of Fuel-Spray Under Non-Reacting IC Engine Conditions
,”
At. Sprays
,
23
(
10
), pp.
925
955
.
29.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.
30.
Menon
,
S.
,
Yeung
,
P.-K.
, and
Kim
,
W.-W.
,
1996
, “
Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence
,”
Comput. Fluids
,
25
(
2
), pp.
165
180
.
31.
Badra
,
J. A.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H. G.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052202
.
32.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2016
, “
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032205
.
33.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE Transactions
, pp.
492
509
. https://www.jstor.org/stable/44718226
34.
Bravo
,
L.
,
Wijeyakulasuriya
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Kweon
,
C. B.
,
2016
, “
Large-Eddy Simulation of High Reynolds Number Non-Reacting and Reacting JP-8 Sprays in a Constant Pressure Flow Vessel With a Detailed Chemistry Approach
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032207
.
35.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
36.
Bartolucci
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2021
, “
A Computational Investigation of the Impact of Multiple Injection Strategies on Combustion Efficiency in Diesel–Natural Gas Dual-Fuel Low-Temperature Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022305
.
37.
Kyriakides
,
N.
,
Chryssakis
,
C.
, and
Kaiktsis
,
L.
,
2009
,
Influence of Heavy Fuel Properties on Spray Atomisation for Marine Diesel Engine Applications
. SAE Technical Paper No. 2009-01-1858.
38.
Kalwar
,
A.
,
Chintagunti
,
S.
, and
Agarwal
,
A. K.
,
2021
,
Gasohol Sprays Simulations of a Multi-Hole GDI Injector in Engine-Like Conditions
. SAE Technical Paper No. 2021-01-0549.
39.
Myong
,
K.-J.
,
Suzuki
,
H.
,
Senda
,
J.
, and
Fujimoto
,
H.
,
2008
, “
Spray Inner Structure of Evaporating Multi-Component Fuel
,”
Fuel
,
87
(
2
), pp.
202
210
.
40.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1990
, “
Structures of Fuel Sprays in Diesel Engines
,”
SAE Transactions
, pp.
1050
1061
. https://www.jstor.org/stable/44548562
41.
Dent
,
J. C.
,
1971
, “
A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration
,”
SAE Transactions
, pp.
1881
1884
. https://www.jstor.org/stable/44651829
42.
Siebers
,
D. L.
,
1999
, “
Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporisation
,”
SAE Transactions
, pp.
703
728
. https://www.jstor.org/stable/44743404
43.
Zhang
,
W.
,
Li
,
X.
,
Huang
,
L.
, and
Feng
,
M.
,
2019
, “
Experimental Study on Spray and Evaporation Characteristics of Diesel-Fueled Marine Engine Conditions Based on Optical Diagnostic Technology
,”
Fuel
,
246
, pp.
454
465
.
44.
Payri
,
R.
,
Gimeno
,
J.
,
Bracho
,
G.
, and
Vaquerizo
,
D.
,
2016
, “
Study of Liquid and Vapour Phase Behaviour on Diesel Sprays for Heavy-Duty Engine Nozzles
,”
Appl. Therm. Eng.
,
107
, pp.
365
378
.
45.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vapourisation on Penetration and Dispersion of Diesel Sprays
,”
SAE Transactions
, pp.
82
111
. https://www.jstor.org/stable/44736259
46.
Desantes
,
J. M.
,
Payri
,
R.
,
Salvador
,
F. J.
, and
Gil
,
A.
,
2006
, “
Development and Validation of a Theoretical Model for Diesel Spray Penetration
,”
Fuel
,
85
(
7–8
), pp.
910
917
.
47.
Payri
,
R.
,
Salvador
,
F. J.
,
Gimeno
,
J.
, and
Novella
,
R.
,
2011
, “
Flow Regime Effects on Non-Cavitating Injection Nozzles Over Spray Behaviour
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
273
284
.
48.
Elkotb
,
M. M.
,
1982
, “
Fuel Atomisation for Spray Modelling
,”
Prog. Energy Combust. Sci.
,
8
(
1
), pp.
61
91
.
49.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1974
, “
Fuel Droplet Size Distribution in Diesel Combustion Chamber
,”
SAE Transactions
, pp.
2615
2624
. https://www.jstor.org/stable/44657521
50.
Hiroyasu
,
H.
,
Arai
,
M.
, and
Tabata
,
M.
,
1989
, “
Empirical Equations for the Sauter Mean Diameter of a Diesel Spray
,”
SAE Transactions
, pp.
868
877
. https://www.jstor.org/stable/44580992
51.
Ghassemi
,
H.
,
Baek
,
S. W.
, and
Khan
,
Q. S.
,
2006
, “
Experimental Study on Binary Droplet Evaporation at Elevated Pressures and Temperatures
,”
Combust. Sci. Technol.
,
178
(
6
), pp.
1031
1053
.
52.
Spalding
,
D. B.
,
1950
, “
Combustion of Liquid Fuels
,”
Nature
,
165
(
4187
), pp.
160
160
.
53.
Saada M
,
A.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2010
, “
Numerical Investigation of Heat and Mass Transfer of an Evaporating Sessile Drop on a Horizontal Surface
,”
Phys. Fluids
,
22
(
11
), p.
112115
.
54.
Meng
,
K.
,
Han
,
K.
,
Li
,
F.
,
Bao
,
L.
,
Wang
,
C.
, and
Lin
,
Q.
,
2021
, “
Study on Combustion and Micro-Explosion Characteristics of Biodiesel and Ethanol Mixture Droplets Under Different Oxygen Concentrations and Temperatures
,”
Phys. Fluids
,
33
(
5
), p.
052003
.
55.
Hwang
,
C. H.
,
Baek
,
S. W.
, and
Cho
,
S. J.
,
2014
, “
Experimental Investigation of Decomposition and Evaporation Characteristics of HAN-Based Monopropellants
,”
Combust. Flame
,
161
(
4
), pp.
1109
1116
.
56.
Kim
,
Y.
, and
Hermanson
,
J. C.
,
2012
, “
Break-Up and Vapourisation of Droplets Under Locally Supersonic Conditions
,”
Phys. Fluids
,
24
(
7
), p.
076102
.
57.
Charalampous
,
G.
, and
Hardalupas
,
Y.
,
2016
, “
How Do Liquid Fuel Physical Properties Affect Liquid Jet Development in Atomisers?
,”
Phys. Fluids
,
28
(
10
), p.
102106
.
58.
Naruemon
,
I.
,
Liu
,
L.
,
Liu
,
D.
,
Ma
,
X.
, and
Nishida
,
K.
,
2020
, “
An Analysis on the Effects of the Fuel Injection Rate Shape of the Diesel Spray Mixing Process Using a Numerical Simulation
,”
Appl. Sci.
,
10
(
14
), p.
4983
.
59.
Patil
,
S.
, and
Sahu
,
S.
,
2021
, “
Air Swirl Effect on Spray Characteristics and Droplet Dispersion in a Twin-Jet Crossflow Airblast Injector
,”
Phys. Fluids
,
33
(
7
), p.
073314
.
You do not currently have access to this content.