Abstract

Reactivity controlled compression ignition (RCCI) combustion has previously been proposed as a method to achieve high fuel conversion efficiency and reduce engine emissions. A single-fuel RCCI combustion strategy can have decreased fuel system complexity by using a reformate fuel for port fuel injection and the parent fuel (diesel) for direct injection. This paper presents a one-dimensional computational model of a compression ignition engine with single-fuel RCCI. A Wiebe function is used to predict the combustion process by representing the mass fraction burned (MFB) on a crank angle resolved basis. One single-Wiebe function (SWF) and two double-Wiebe functions(DWFs) were fitted to experimentally derive MFB data using the least-square method. The fitted results were compared with MFBs calculated from experimental data to verify the accuracy. The SWF did not fully capture the MFB curve with high fidelity while the detailed DWF captured the MFB curve within a root mean square error of 1.4%. The reduced double-Wiebe function (RDWF) also resulted in a predicted combustion profile with similar accuracy. Hence, the RDWF was used in a GT-power thermodynamic study to understand the effects of the low-temperature heat release (LTHR) fraction and combustion phasing on combustion characteristics. At optimum phasing of 5–10 crank angle degree after the top dead center, increasing the LTHR fraction from 20% to 60% resulted in the fuel conversion efficiency increasing from 39.5% to 41.1%, thus suggesting that the reformate fuel-based RCCI strategy is viable to unlock improved combustion performance.

References

1.
Johnson
,
T. V.
,
2009
, “
Review of Diesel Emissions and Control
,”
Int. J. Engine Res.
,
10
(
5
), pp.
275
285
.
2.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,” SAE Technical Paper Series, SAE International.
3.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Jo
,
P. D.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,” SAE Technical Paper.
4.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,” SAE Technical Paper.
5.
Kimura
,
S.
,
Aoki
,
O.
,
Ogawa
,
H.
,
Muranaka
,
S.
, and
Enomoto
,
Y.
,
1999
, “
New Combustion Concept for Ultra-Clean and High-Efficiency Small Di Diesel Engines
,” SAE Technical Paper.
6.
Zhao
,
F.
,
Asmus
,
T. N.
,
Assanis
,
D. N.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
, “
Homogeneous Charge Compression Ignition (HCCI) Engines
,” SAE Technical Paper.
7.
Tanaka
,
S.
,
Ayala
,
F.
, and
Keck
,
J. C.
,
2003
, “
A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine
,”
Combust. Flame
,
133
(
4
), pp.
467
481
.
8.
Soyhan
,
H. S.
,
Mauss
,
F.
, and
Sorusbay
,
C.
,
2002
, “
Chemical Kinetic Modeling of Combustion in Internal Combustion Engines Using Reduced Chemistry
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
73
91
.
9.
Genzale
,
C. L.
,
Reitz
,
R. D.
, and
Musculus
,
M. P.
,
2009
, “
Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
1
(
1
), pp.
913
937
.
10.
Bobba
,
M.
,
Musculus
,
M.
, and
Neel
,
W.
,
2010
, “
Effect of Post Injections on In-Cylinder and Exhaust Soot for Low-Temperature Combustion in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
496
516
.
11.
Cao
,
L.
,
Bhave
,
A.
,
Su
,
H.
,
Mosbach
,
S.
,
Kraft
,
M.
,
Dris
,
A.
, and
McDavid
,
R. M.
,
2009
, “
Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1019
1033
.
12.
Bessonette
,
P. W.
,
Schleyer
,
C. H.
,
Duffy
,
K. P.
,
Hardy
,
W. L.
, and
Liechty
,
M. P.
,
2007
, “
Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion
,” SAE Technical Paper.
13.
Inagaki
,
K.
,
Fuyuto
,
T.
,
Nishikawa
,
K.
,
Nakakita
,
K.
, and
Sakata
,
I.
,
2006
, “
Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability
,” SAE Technical Paper.
14.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.
15.
Dempsey
,
A. B.
,
Ryan Walker
,
N.
,
Gingrich
,
E.
, and
Reitz
,
R. D.
,
2014
, “
Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines With a Focus on Controllability
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
210
241
.
16.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
17.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
700
716
.
18.
Ryan Walker
,
N.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.
19.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
20.
Paykani
,
A.
,
Kakaee
,
A.-H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2016
, “
Progress and Recent Trends in Reactivity-Controlled Compression Ignition Engines
,”
Int. J. Eng. Res.
,
17
(
5
), pp.
481
524
.
21.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid- and High-Loads With Conventional and Alternative Fuels
,” SAE Technical Paper.
22.
Kaddatz
,
J.
,
Andrie
,
M.
,
Reitz
,
R. D.
, and
Kokjohn
,
S.
,
2012
, “
Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver
,” SAE Technical Paper.
23.
Dempsey
,
A. B.
,
Ryan Walker
,
N.
, and
Reitz
,
R.
,
2013
, “
Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion
,”
SAE Int. J. Fuels Lubr.
,
6
(
1
), pp.
170
187
.
24.
Splitter
,
D.
,
Reitz
,
R.
, and
Hanson
,
R.
,
2010
, “
High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
742
756
.
25.
Lawler
,
B.
, and
Mamalis
,
S.
,
2018
, “
Single-Fuel Reactivity Controlled Compression Ignition Combustion Enabled by Onboard Fuel Reformation
,” US Patent Ap. 15/082,469.
26.
Chuahy
,
F. D.
, and
Kokjohn
,
S. L.
,
2017
, “
Effects of Reformed Fuel Composition in ‘Single’ Fuel Reactivity Controlled Compression Ignition Combustion
,”
Appl. Energy
,
208
, pp.
1
11
.
27.
Ran
,
Z.
,
Longtin
,
J.
, and
Assanis
,
D.
,
2021
, “
Investigating Anode Off-Gas Under Spark-Ignition Combustion for SOFC-Ice Hybrid Systems
,”
Int. J. Engine Res.
28.
Ran
,
Z.
,
Assanis
,
D.
,
Hariharan
,
D.
, and
Mamalis
,
S.
,
2020
, “
Experimental Study of Spark-Ignition Combustion Using the Anode Off-Gas From a Solid Oxide Fuel Cell
,” SAE Technical Paper.
29.
Nikiforakis
,
I.
,
Ran
,
Z.
,
Sprengel
,
M.
,
Brackett
,
J.
,
Babbit
,
G.
, and
Assanis
,
D.
,
2021
, “
Investigating Realistic Anode Off-Gas Combustion in Sofc/Ice Hybrid Systems: Mini Review and Experimental Evaluation
,”
Int. J. Engine Res.
30.
Hariharan
,
D.
,
Yang
,
R.
,
Zhou
,
Y.
,
Gainey
,
B.
,
Mamalis
,
S.
,
Smith
,
R. E.
,
Lugo-Pimentel
,
M. A.
, et al
,
2019
, “
Catalytic Partial Oxidation Reformation of Diesel, Gasoline, and Natural Gas for Use in Low Temperature Combustion Engines
,”
Fuel
,
246
, pp.
295
307
.
31.
Yang
,
R.
,
Hariharan
,
D.
,
Zilg
,
S.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2018
, “
Efficiency and Emissions Characteristics of an HCCI Engine Fueled by Primary Reference Fuels
,”
SAE Int. J. Engines
,
11
(
6
), pp.
993
1006
.
32.
Hariharan
,
D.
,
Gainey
,
B.
,
Yan
,
Z.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2020
, “
Experimental Study of the Effect of Start of Injection and Blend Ratio on Single Fuel Reformate RCCI
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081010
.
33.
Guleria
,
G.
,
Lopez-Pintor
,
D.
,
Dec
,
J. E.
, and
Assanis
,
D.
,
2021
, “
A Comparative Study of Gasoline Skeletal Mechanisms Under Partial Fuel Stratification Conditions Using Large Eddy Simulations
,”
Int. J. Engine Res.
34.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, Vol.
930
,
McGraw-Hill
,
New York
.
35.
Zheng
,
J.
, and
Caton
,
J. A.
,
2012
, “
Use of a Single-Zone Thermodynamic Model With Detailed Chemistry to Study a Natural Gas Fueled Homogeneous Charge Compression Ignition Engine
,”
Energy Convers. Manage.
,
53
(
1
), pp.
298
304
.
36.
Liu
,
Z.
, and
Chen
,
R.
,
2009
, “
A Zero-Dimensional Combustion Model With Reduced Kinetics for SI Engine Knock Simulation
,”
Combust. Sci. Technol.
,
181
(
6
), pp.
828
852
.
37.
Neshat
,
E.
, and
Saray
,
R. K.
,
2014
, “
Development of a New Multi Zone Model for Prediction of HCCI (Homogenous Charge Compression Ignition) Engine Combustion, Performance and Emission Characteristics
,”
Energy
,
73
, pp.
325
339
.
38.
Yasar
,
H.
,
Soyhan
,
H. S.
,
Walmsley
,
H.
,
Head
,
B.
, and
Sorusbay
,
C.
,
2008
, “
Double-Wiebe Function: An Approach for Single-Zone HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1284
1290
.
39.
Stone
,
R.
,
1999
,
Introduction to Internal Combustion Engines
, Vol.
3
,
Springer
,
New York
.
40.
Assanis
,
D.
,
Karvounis
,
E.
,
Sekar
,
R.
, and
Marr
,
W.
,
1993
, “
Heat Release Analysis of Oxygen-Enriched Diesel Combustion
,”
ASME J. Eng. Gas Turbines Power
,
115
(
4
), pp.
761
768
.
41.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D.
, and
Naber
,
J.
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. KONES
,
15
(
3
), pp.
567
574
.
42.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2213
2220
.
43.
Lindström
,
F.
,
Ångström
,
H.-E.
,
Kalghatgi
,
G.
, and
Möller
,
C. E.
,
2005
, “
An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations
,”
SAE Trans.
,
114
(
4
), pp.
833
846
.
44.
Yıldız
,
M.
, and
Albayrak Çeper
,
B.
,
2017
, “
Zero-Dimensional Single Zone Engine Modeling of an SI Engine Fuelled With Methane and Methane-Hydrogen Blend Using Single and Double Wiebe Function: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25756
25765
.
45.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
, pp.
95
103
.
46.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Improved Thermodynamic Model for Lean Natural Gas Spark Ignition in a Diesel Engine Using a Triple Wiebe Function
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062303
.
47.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2020
, “
Characterizing Two-Stage Combustion Process in a Natural Gas Spark Ignition Engine Based on Multi-Wiebe Function Model
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102302
.
48.
Awad
,
S.
,
Varuvel
,
E. G.
,
Loubar
,
K.
, and
Tazerout
,
M.
,
2013
, “
Single Zone Combustion Modeling of Biodiesel From Wastes in Diesel Engine
,”
Fuel
,
106
, pp.
558
568
.
49.
Yang
,
R.
,
Ran
,
Z.
, and
Assanis
,
D.
,
2021
, “
Estimation of Wiebe Function Parameters for Syngas and Anode Off-Gas Combustion in Spark-Ignition Engines
,”
Paper Presented at the Internal Combustion Engine Division Fall Technical Conference
,
Virtual, Online
,
Oct. 13–15
.
50.
Ran
,
Z.
,
Hadlich
,
R. R.
,
Yang
,
R.
,
Dayton
,
D. C.
,
Mante
,
O. D.
, and
Assanis
,
D.
,
2022
, “
Experimental Investigation of Naphthenic Biofuel Surrogate Combustion in a Compression Ignition Engine
,”
Fuel
,
312
, p.
122868
.
51.
Hohenberg
,
G. F.
,
1979
, “
Advanced Approaches for Heat Transfer Calculations
,” SAE Technical Paper.
52.
Gamma Technologies Inc
,
2017
,
GT-POWER User’s Manual. “Gt-Suite Version 2016.”
53.
Wang
,
Y.
,
Yao
,
M.
,
Li
,
T.
,
Zhang
,
W.
, and
Zheng
,
Z.
,
2016
, “
A Parametric Study for Enabling Reactivity Controlled Compression Ignition (RCCI) Operation in Diesel Engines at Various Engine Loads
,”
Appl. Energy
,
175
, pp.
389
402
.
54.
Ma
,
S.
,
Zheng
,
Z.
,
Liu
,
H.
,
Zhang
,
Q.
, and
Yao
,
M.
,
2013
, “
Experimental Investigation of the Effects of Diesel Injection Strategy on Gasoline/Diesel Dual-Fuel Combustion
,”
Appl. Energy
,
109
, pp.
202
212
.
55.
Mohammadian
,
A.
,
Chehrmonavari
,
H.
,
Kakaee
,
A.
, and
Paykani
,
A.
,
2020
, “
Effect of Injection Strategies on a Single-Fuel RCCI Combustion Fueled With Isobutanol/Isobutanol+ DTBP Blends
,”
Fuel
,
278
, p.
118219
.
You do not currently have access to this content.