Abstract

For the supercritical n-decane horizontally flowing in a rectangular channel of an active regenerative cooling system, a transient thermal–fluid–structure coupling method is employed to investigate the unsteady thermal-hydraulic characteristics and the wall deformation at a starting stage. The temperature distributions of the fluid domain and solid domain along the flow direction are investigated at fixed times as well as at a certain cross section. Streamlines in cross sections are employed to explain the temperature distribution. The velocity and pressure at a fixed point versus time are also given. Besides, the solid deformation is presented according to the uneven pressure distribution and temperature distribution. It is found that the response time is less than 30 s when the heat flux is less than 3.0 MW/m2. A larger heat flux contributes to promoting the steady state. The high-temperature part of the solid domain is close to the heated wall, but the situation is reversed for the fluid domain. This is because a bunch of dead-zone vortices appears in the vicinity of the upper wall of the channel. The maximum deformation is 0.132 mm for the condition of heat flux 3.0 MW/m2 and it is exacerbated by the uneven temperature and pressure distributions on the solid domain.

References

1.
Pizzarelli
,
M.
,
Nasuti
,
F.
, and
Onofri
,
M.
,
2016
, “
Evolution of Cooling-Channel Properties for Varying Aspect Ratio
,”
Prog. Propul. Phys.
,
8
, pp.
117
128
.
2.
Tsujikawa
,
Y.
, and
Northam
,
G. B.
,
1996
, “
Effects of Hydrogen Active Cooling on Scramjet Engine Performance
,”
Int. J. Hydrogen Energy
,
21
(
4
), pp.
299
304
.
3.
Gascoin
,
N.
,
Gillard
,
P.
,
Bernard
,
S.
,
Daniau
,
E.
, and
Bouchez
,
M.
,
2008
, “
Pyrolysis of Supercritical Endothermic Fuel: Evaluation for Active Cooling Instrumentation
,”
Int. J. Chem. React. Eng.
,
6
(
1
), p.
7
.
4.
Pizzarelli
,
M.
,
Urbano
,
A.
, and
Nasuti
,
F.
,
2010
, “
Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants
,”
Numer. Heat Transfer Part A
,
57
(
5
), pp.
297
314
.
5.
Sahu
,
S.
, and
Vaidya
,
A. M.
,
2020
, “
Numerical Study of Enhanced and Deteriorated Heat Transfer Phenomenon in Supercritical Pipe Flow
,”
Ann. Nucl. Energy
,
135
, p.
106966
.
6.
Schatte
,
G. A.
,
Kohlhepp
,
A.
,
Gschnaidtner
,
T.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2018
, “
Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062002
.
7.
Jaromin
,
M.
, and
Anglart
,
H.
,
2013
, “
A Numerical Study of Heat Transfer to Supercritical Water Flowing Upward in Vertical Tubes Under Normal and Deteriorated Conditions
,”
Nucl. Eng. Des.
,
264
, pp.
61
70
.
8.
Lock
,
A.
,
Hooman
,
K.
, and
Guan
,
Z. Q.
,
2019
, “
A Detailed Model of Direct Dry-Cooling for the Supercritical Carbon Dioxide Brayton Power Cycle
,”
Appl. Therm. Eng.
,
163
, p.
114390
.
9.
Zada
,
K. R.
,
Hyder
,
M. B.
,
Drost
,
M. K.
, and
Fronk
,
B. M.
,
2016
, “
Numbering-Up of Microscale Devices for Megawatt-Scale Supercritical Carbon Dioxide Concentrating Solar Power Receivers
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061007
.
10.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.
11.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2018
, “
Experimental Investigation on Validity of Buoyancy Parameters to Heat Transfer of CO2 at Supercritical Pressures in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
222
230
.
12.
Buzzi
,
F.
,
Pucciarelli
,
A.
, and
Ambosini
,
W.
,
2019
, “
On the Mechanism of Final Heat Transfer Restoration at the Transition to Gas-Like Fluid at Supercritical Pressure: A Description by CFD Analyses
,”
Nucl. Eng. Des.
,
355
, p.
110345
.
13.
Tao
,
Z.
,
Hu
,
X. Z.
,
Zhu
,
J. Q.
, and
Wu
,
H. W.
,
2018
, “
Numerical Investigation of Pyrolysis Effects on Heat Transfer Characteristics and Flow Resistance of n-Decane Under Supercritical Pressure
,”
Chin. J. Aeronaut.
,
31
(
6
), pp.
1249
1257
.
14.
Jiao
,
S.
,
Li
,
S. F.
,
Pu
,
H.
,
Dong
,
M.
, and
Shang
,
Y.
,
2019
, “
Experimental Investigation on Thermal Cracking and Convective Heat Transfer Characteristics of Aviation Kerosene RP-3 in a Vertical Tube Under Supercritical Pressures
,”
Int. J. Therm. Sci.
,
146
, p.
106092
.
15.
Xie
,
G. N.
,
Xu
,
X. X.
,
Lei
,
X. L.
,
Li
,
Z. H.
,
Li
,
Y.
, and
Sunden
,
B.
,
2022
, “
Heat Transfer Behaviors of Some Supercritical Fluids: A Review
,”
Chin. J. Aeronaut.
,
35
(
1
), pp.
290
306
.
16.
Wang
,
Y. H.
, and
Li
,
S. F.
,
2018
, “
Characteristic and Prediction of Thermo-Acoustic Oscillation of Aviation Kerosene Under Supercritical Pressures
,”
Chin. CIESC J.
,
69
(
4
), pp.
1412
1418
.
17.
Dutta
,
G.
,
Maitri
,
R.
,
Zhang
,
C.
, and
Jiang
,
J.
,
2015
, “
Numerical Models to Predict Steady and Unsteady Thermal-Hydraulic Behaviour of Supercritical Water Flow in Circular Tubes
,”
Nucl. Eng. Des.
,
289
, pp.
155
165
.
18.
Ge
,
X. L.
,
Zhang
,
Z. X.
,
Fan
,
H. J.
,
Zhang
,
J.
, and
Bi
,
D. G.
,
2019
, “
Unsteady-State Heat Transfer Characteristics of Spiral Water Wall Tube in Advanced-Ultra-Supercritical Boilers From Experiments and Distributed Parameter Model
,”
Energy
,
189
, p.
116158
.
19.
Yan
,
J. J.
,
Zhu
,
Y. H.
,
Zhao
,
R.
,
Yan
,
S.
, and
Jiang
,
P. X.
,
2018
, “
Experimental Investigation of the Flow and Heat Transfer Instabilities in n-Decane at Supercritical Pressures in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
120
, pp.
987
996
.
20.
Wang
,
J.
,
Zhou
,
J.
,
Pan
,
Y.
, and
Wang
,
H.
,
2013
, “
Density Wave Instability of Supercritical Kerosene in Active Cooling Channels of Scramjets
,”
Appl. Mech. Mater.
,
321
324
, pp.
293
298
.
21.
Zhang
,
Z.
,
Yang
,
X. T.
, and
Jiang
,
P. X.
,
2015
, “
Study on Heat Transfer and Flow Instability of Supercritical Water in Vertical Tube
,”
Atom. Energy Sci. Technol.
,
49
(
11
), pp.
2011
2016
.
22.
Yan
,
J. J.
,
Zhu
,
Y. H.
,
Lu
,
Z. L.
, and
Jiang
,
P. X.
,
2015
, “
Transient Response of Supercritical Pressure Hydrocarbon Fuels During Heating Condition
,”
Chin. CIESC J.
,
66
(
S1
), pp.
65
70
.
23.
Thiede
,
R. G.
,
Riccius
,
J. R.
, and
Reese
,
S.
,
2017
, “
Life Prediction of Rocket Combustion-Chamber-Type Thermomechanical Fatigue Panels
,”
J. Propul. Power
,
33
(
6
), pp.
1529
1542
.
24.
Li
,
Y.
,
Sun
,
F.
,
Xie
,
G. N.
, and
Qin
,
J.
,
2018
, “
Improved Thermal Performance of Cooling Channels With Truncated Ribs for a Scramjet Combustor Fueled by Endothermic Hydrocarbon
,”
Appl. Therm. Eng.
,
142
, pp.
695
708
.
25.
Yu
,
J.
, and
Eser
,
S.
,
1997
, “
Thermal Decomposition of C10–C14 Normal Alkanes in Near-Critical and Supercritical Regions: Product Distributions and Reaction Mechanisms
,”
Ind. Eng. Chem. Res.
,
36
(
3
), pp.
574
585
.
26.
Li
,
Y.
,
Sun
,
F.
,
Sunden
,
B.
, and
Xie
,
G. N.
,
2019
, “
Turbulent Heat Transfer Characteristics of Supercritical n-Decane in a Vertical Tube Under Various Operating Pressures
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4652
4669
.
27.
Zhu
,
Y. H.
,
Liu
,
B.
, and
Jiang
,
P. X.
,
2014
, “
Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube
,”
Energy Fuels
,
28
(
1
), pp.
466
474
.
28.
Li
,
Y.
,
Xie
,
G. N.
, and
Sunden
,
B. A.
,
2020
, “
Effect of Wall Conduction on the Heat Transfer Characteristics of Supercritical n-Decane in a Horizontal Rectangular Pipe for Cooling of a Scramjet Combustor
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
3
), pp.
880
896
.
29.
Pu
,
H.
,
Li
,
S. F.
,
Dong
,
M.
,
Jiao
,
S.
,
Wang
,
Y. N.
, and
Shang
,
Y.
,
2019
, “
Convective Heat Transfer and Flow Resistance Characteristics of Supercritical Pressure Hydrocarbon Fuel in a Horizontal Rectangular Mini-Channel
,”
Exp. Therm. Fluid Sci.
,
108
, pp.
39
53
.
30.
Chu
,
X.
, and
Laurien
,
E.
,
2016
, “
Flow Stratification of Supercritical CO2 in a Heated Horizontal Pipe
,”
J. Supercrit. Fluids
,
116
, pp.
172
189
.
31.
Li
,
Y.
,
Chen
,
Y. C.
,
Xie
,
G. N.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer and Secondary Flow Characteristics in a Horizontally Round Pipe for Cooling a Scramjet Combustor by Supercritical n-Decane
,”
ASME J. Energy Resour. Technol.
,
143
(2), p.
022105
.
You do not currently have access to this content.