Abstract

The present investigation represents the rotational effect on gas turbine blade internal cooling with a uniform heat flux of 2000 W/m2 at the bottom wall. The experiment was conducted with three different rpms, such as 300 rpm, 600 rpm, and 900 rpm, with Reynolds number (Re) ranging from 6000 to 50,000 with a two-pass cooling channel. The numerical investigation was conducted with the large eddy simulation (LES) technique to understand the rotational flow behavior of the cooling channel. Four distinct arrangements of dimpled cooling channel surfaces were considered with two different dimple shapes, i.e., partial spherical and leaf. It is found that the rotation effect, dimple arrangement, and design have significant influences on heat transfer. Results indicated that the partial spherical 1-row dimpled surface experienced the highest heat transfer coefficient and pressure drop. In contrast, the leaf-shaped dimpled cooling channel experienced the highest thermal efficiency.

References

1.
The World’s First Industrial Gas Turbine Set—GT NEUCHÂTEL
,
2007
,
The American Society of Mechanical Engineers
. Brosch_A4portrait_en_4.indd (asme.org). Accessed December 27, 2021.
2.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2020
, “
Heat Transfer Evaluation for a Two-Pass Smooth Wall Channel: Stationary and Rotating Cases
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061305
.
3.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
. DOI: 10.1115/1.4043654
4.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
. DOI: 10.1615/InterJEnerCleanEnv.2020033628
5.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2022
, “
Experimental and Large Eddy Simulation Study for Visualizing Complex Flow Phenomena of Gas Turbine Internal Blade Cooling Channel With No Bend
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062104
.
6.
Ashitaka
,
Y.
,
2010
,
“Heat/Mass Transfer Study on Ribbed Channel Flow in Gas Turbine Blade,” Doctoral Dissertation, University of Wisconsin – Milwaukee, WI
.
7.
Kumar
,
S.
, and
Amano
,
R. S.
,
2012, November
, “
Numerical Simulation of Two-Pass Gas Turbine Blade Internal Cooling Channels With 90 Degree Varying Height Ribs
,”
ASME International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
, pp.
245
253
.
8.
Jin
,
W.
,
Jia
,
N.
,
Wu
,
J.
,
Lei
,
J.
and
Liu
,
L.
,
2019, June
, “
Numerical Study on Flow and Heat Transfer Characteristics of Pin-Fins With Different Shapes
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
58646
,
American Society of Mechanical Engineers
, Paper No.
V05AT11A006
.
9.
Effendy
,
M.
,
Yao
,
Y.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2019
, “
Pin-Fin Shape and Orientation Effects on Wall Heat Transfer Predictions of Gas Turbine Blade
,”
AIP Conference Proceedings
,
Surakarta, Indonesia
,
Dec. 12–13
.
10.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
11.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With In-Line and Staggered Nozzle Arrays
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
169
182
. DOI:10.1615/InterJEnerCleanEnv.2020033479
12.
Rashidi
,
S.
,
Hormozi
,
F.
,
Sundén
,
B.
, and
Mahian
,
O.
,
2019
, “
Energy Saving in Thermal Energy Systems Using Dimpled Surface Technology—A Review on Mechanisms and Applications
,”
Appl. Energy
,
250
, pp.
1491
1547
.
13.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
.
14.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
and
Soechting
,
F. O.
,
1997, June
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
78705
,
American Society of Mechanical Engineers, Paper No.
V003T09A080
.
15.
Moon
,
H. K.
,
O’connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
307
313
.
16.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
17.
Xie
,
G.
, and
Sundén
,
B.
,
2010
, “
Numerical Predictions of Augmented Heat Transfer of an Internal Blade Tip-Wall by Hemispherical Dimples
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5639
5650
.
18.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
031901
.
19.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface With Teardrop-Shaped Dimples
,”
Proceedings of the Asian Congress on Gas Turbines, 2009-8
,
Tokyo, Japan
,
Aug. 24–26
, pp.
1
4
.
20.
Zhou
,
F.
, and
Acharya
,
S.
,
2001
, “
Mass/Heat Transfer in Dimpled Two-Pass Coolant Passages With Rotation
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
424
431
.
21.
Galeana
,
D.
, and
Beyene
,
A.
,
2021
, “
Gas Turbine Blade Heat Transfer and Internal Swirl Cooling Flow Experimental Study Using Liquid Crystals and Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102106
.
22.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
23.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
24.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Boston, MA
.
25.
Amano
,
R. S.
,
Keenan
,
M.
, and
Ou
,
S.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Boston, MA
, pp.
33
62
.
26.
Amano
,
R. S.
,
Sunden
,
B.
, and
Brebbia
,
CA
,
2008
, Advanced Computational Methods and Experiments in Heat Transfer X,
WIT Press
,
Southampton, UK
, pp.
149
157
.
27.
Amano
,
R. S.
,
2002
, “Heat Transfer Predictions of Stator/Rotor Blades and Rotating Disk,”
Heat Transfer in Gas Turbine Systems
,
WIT Press
,
Southampton, UK
, pp.
227
261
.
28.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
29.
Amano
,
R. S.
,
1995
, “Turbulence Heat Transfer Characteristics in a Gas Turbine Stator-Rotor Stage,”
Turbulence, Heat and Mass Transfer 1
,
K.
Hanjalic
, and
J. C. F.
Pereira
, eds.,
Begell House, Inc.
,
Danbury, CT
, pp.
459
465
.
30.
Amano
,
R. S.
,
1996
, “Turbulence Heat Transfer Characteristics in a Gas Turbine Stator-Rotor Stage,”
Turbulence, Heat and Mass Transfer 1
,
K.
Hanjalic
, and
J. C. F.
Pereira
, eds.,
Begell House, Inc.
,
Danbury, CT
, pp.
459
465
.
31.
Amano
,
R. S.
,
Wang
,
K. D.
, and
Pavelic
,
V.
,
1994
, “
A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Turbine
,”
ASME J. Turbomach.
,
116
(
2
), pp.
333
338
.
32.
Amano
,
R. S.
,
2019
,
Study on Heat Transfer of a Rotational Turbine Blade System
,”
International Gas Turbine Congress, Tokyo, IGTC-2019-008
,
Toranomon, Minato-ku, Tokyo, Japan
,
Nov. 17–22
.
33.
Dong
,
P.
, and
Amano
,
R. S.
,
2017
, “
High-Pressure Gas Turbine Vane Turbulent Flows and Heat Transfer Predicted By RANS/LES/DES
,”
GT2017-630322017 ASME Turbo & Expo
,
Charlotte, NC
,
June 26–30
,
p. V05BT22A001
.
34.
Amano
,
R. S.
, and
Kumar
,
S.
,
2016
, “
Gas Turbine Blade Cooling Passage With V and Broken V-Shaped Ribs
,”
11-2 Numerical Internal Cooling: Ribs, Pin Fins, and Pedestals—I, Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
,
p. V05BT11A001
.
35.
Guntur
,
K. S.
,
Kumar
,
S.
, and
Amano
,
R. S.
,
2012
, “
Experimental and Numerical Evaluation of Geometric Modifications in Gas Turbine Blade Cooling Channel
,”
2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Jan. 9–12
.
36.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR= 4) With Dimples
,”
Turbo Expo: Power for Land, Sea, and Air
,
Amsterdam, Netherlands
,
June 3–6
.
37.
Kim
,
S.
,
Choi
,
E. Y.
, and
Kwak
,
J. S.
,
2012
, “
Effect of Channel Orientation on the Heat Transfer Coefficient in the Smooth and Dimpled Rotating Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
064504
.
38.
S. Saravani
,
M.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer Enhancement in Stationary and Rotating Internal Cooling Channels Using Angled Ribs
,”
AIAA SciTech, AIAA-2019-1275
,
San Diego, CA
,
Jan. 7–11
,
p. 1275
.
39.
Amano
,
R. S.
,
Martinez-Lucci
,
J. O.
,
Guntur
,
K.
, and
Song
,
B.
,
2012
, “
Numerical Study of the Thermal Development in a Rotating Cooling Passage
,”
Heat Mass Transfer
,
48
(
6
), pp.
1011
1022
.
40.
Amano
,
R. S.
, and
Song
,
B.
,
2005
, “Simulation of Turbulent Flow in a Duct With and Without Rotation—Cooling Passage of Gas Turbine Blades,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
Southampton, UK
, pp.
315
348
.
41.
Lucci
,
J. M.
,
Guntur
,
K. S.
, and
Amano
,
R.
,
2008
, “
Study of Flow and Thermal Development in a Rotating Cooling Passage
,”
46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2008-1172
,
Reno, NV
,
Jan. 7–10
.
42.
Song
,
B.
, and
Amano
,
R. S.
,
2001
, “
On Turbulent Secondary Flows and Heat Transfer
,”
ASME IGTI Turbo & Expo, 2001-GT-0188
,
Atlanta, GA
,
June 4–7
.
43.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2022
, “
Experimental Study on Flow Behavior and Heat Transfer Enhancement With Distinct Dimpled Gas Turbine Blade Internal Cooling Channel
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072101
.
You do not currently have access to this content.