Abstract

Slickwater fluids, used to undertake fracturing in low-permeability reservoirs, may be derived from produced water consisting of a range of dissolved salts. The fluids are pumped downhole at high flowrates, and hence friction reducers, e.g., anionic polyacrylamides (APAMs) are added, which also impart viscosity to the fluid resulting in better proppant transport. The present work investigates the effect of an APAM copolymer on the viscosity of slickwater fluids; specifically, at high salinity and hardness conditions. The experimental part of this study demonstrated the impact of the parameters—APAM concentration and salt type/concentration—on slickwater fluid viscosity. In a freshwater–APAM fluid, as monovalent salt (salinity) is added incrementally, fluid viscosity decreased initially owing to the charge-shielding effect; and, then viscosity values were leveled off beyond a certain salinity level. However, a very peculiar behavior was observed for the addition of divalent salts (hardness) to fluid systems. Initially, as hardness increased up to 50k ppm (parts per million), as expected, fluid viscosity showed a significant decrease; on the contrary, as the hardness was raised beyond 50k ppm, the solution viscosity showed a distinctive increase up to 250k ppm. This phenomenon may be explained on the basis of the reverse charge-shielding effect, i.e., excessive divalent ionicity inducing repulsion between polymer charge sites. To model the above experimentally observed non-monotonous viscosity behavior, various machine learning models were employed; support vector regression (SVR)based models predicted the slickwater fluid viscosity with maximum accuracy. Sensitivity analysis was carried out to determine the prominence of the studied input parameters. The modeling work would assist in minimizing trial-and-error in designing/optimizing a slickwater fluid system.

References

1.
Montgomery
,
C. T.
, and
Smith
,
M. B.
,
2010
, “
Hydraulic Fracturing: History of an Enduring Technology
,”
J. Pet. Technol.
,
62
(
12
), pp.
26
40
.
2.
Xiong
,
B.
,
Miller
,
Z.
,
White
,
S. R.
,
Tasker
,
T. L.
,
Farina
,
B.
,
Piechowicz
,
B.
,
Joshi
,
P.
, et al
,
2018
, “
Chemical Degradation of Polyacrylamide During Hydraulic Fracturing
,”
Environ. Sci. Technol.
,
52
(
1
), pp.
327
336
.
3.
Palisch
,
T. T.
,
Vincent
,
M.
, and
Handren
,
P. J.
,
2010
, “
Slickwater Fracturing: Food for Thought
,”
SPE Prod. Oper.
,
25
(
3
), pp.
327
344
.
4.
Gonçalves
,
F. A.
, and
Kestin
,
J.
,
1979
, “
The Viscosity of Cacl2, Solutions in the Range 20–50 °C
,”
Ber. Bunsenges. Physik. Chem.
,
83
(
1
), pp.
24
27
.
5.
Paktinat
,
J.
,
O’Neil
,
B. J.
,
Aften
,
C. W.
, and
Hurd
,
M. D.
,
2011
, “
Critical Evaluation of High Brine Tolerant Additives Used in Shale Slickwater Fracs
,”
SPE Production and Operations Symposium
,
TX, Paper No.
SPE-141356-MS.
6.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
367
384
.
7.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.
8.
Zhou
,
M. J.
,
Sun
,
H.
,
Qu
,
Q.
, and
Bai
,
B.
,
2011
, “
An Effective Model of Pipe Friction Prediction From Laboratory Characterization to Field Applications for Friction Reducers
,”
SPE Annual Technical Conference and Exhibition
,
CO,
Paper No. SPE-146674-MS.
9.
Habibpour
,
M.
, and
Clark
,
P. E.
,
2017
, “
Drag Reduction Behavior of Hydrolyzed Polyacrylamide/Xanthan Gum Mixed Polymer Solutions
,”
Pet. Sci.
,
14
(
2
), pp.
412
423
.
10.
Habibpour
,
M.
,
Koteeswaran
,
S.
, and
Clark
,
P. E.
,
2017
, “
Drag Reduction Behavior of Hydrolyzed Polyacrylamide/Polysaccharide Mixed Polymer Solutions–Effect of Solution Salinity and Polymer Concentration
,”
Rheol Acta.
,
56
(
7–8
), pp.
683
694
.
11.
Zhao
,
H.
,
Danican
,
S.
,
Torres
,
H.
,
Christanti
,
Y.
,
Nikolaev
,
M.
,
Mikhailov
,
S. M.
, and
Bonnell
,
A.
,
2018
, “
Viscous Slickwater as Enabler for Improved Hydraulic Fracturing Design in Unconventional Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX,
Paper No. SPE-191520-MS.
12.
Akbari
,
S.
,
Mahmood
,
S. M.
,
Ghaedi
,
H.
, and
Hajri
,
S. A.
,
2019
, “
A New Empirical Model for Viscosity of Sulfonated Polyacrylamide Polymers
,”
Polymers
,
11
(
6
), p.
1046
.
13.
Rashidi
,
M.
,
Blokhus
,
A. M.
, and
Skauge
,
A.
,
2010
, “
Viscosity and Retention of Sulfonated Polyacrylamide Polymers at High Temperature
,”
J. Appl. Polym. Sci.
,
119
(
6
), pp.
3623
3629
.
14.
Shaik
,
A. R.
,
AlAmeri
,
W.
,
AlSumaiti
,
A.
,
Muhammad
,
M.
, and
Thomas
,
N. C.
,
2019
, “
Application of Supervised Machine Learning Technique to Investigate the Effect of Brine Hardness on Polymer Bulk Rheology
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
, Paper No. SPE-197166-MS.
15.
Zheng
,
H.
,
Ma
,
J.
,
Ji
,
F.
,
Tang
,
X.
,
Chen
,
W.
,
Zhu
,
J.
,
Liao
,
Y.
, and
Tan
,
M.
,
2013
, “
Synthesis and Application of Anionic Polyacrylamide in Water Treatment: A Review
,”
Asian J. Chem.
,
25
(
13
), pp.
7071
7074
.
16.
Aften
,
C.
, and
Watson
,
W. P.
,
2009
, “
Improved Friction Reducer for Hydraulic Fracturing
,”
SPE Hydraulic Fracturing Technology Conference
,
TX,
Paper No. SPE-118747-MS.
17.
Al-Sarkhi
,
A.
,
2010
, “
Drag Reduction With Polymers in Gas–Liquid/Liquid–Liquid Flows in Pipes: A Literature Review
,”
J. Nat. Gas Sci. Eng.
,
2
(
1
), pp.
41
48
.
18.
Sun
,
H.
,
Stevens
,
R. F.
,
Cutler
,
J. L.
,
Wood
,
B.
,
Wheeler
,
R. S.
, and
Qu
,
Q.
,
2010
, “
A Novel Non-damaging Friction Reducer: Development and Successful Slickwater Frac Applications
,”
SPE Tight Gas Completions Conference
,
TX,
Paper No. SPE-136807-MS.
19.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.
20.
Seright
,
R. S.
,
Campbell
,
A. R.
, and
Mozley
,
P. S.
,
2009
, “
Stability of Partially Hydrolyzed Polyacrylamides at Elevated Temperatures in the Absence of Divalent Cations
,”
SPE International Symposium on Oilfield Chemistry
,
The Woodlands, TX,
Paper No. SPE-121460-MS.
21.
Rashidi
,
M.
,
Blokhus
,
A. M.
, and
Skauge
,
A.
,
2010
, “
Viscosity Study of Salt Tolerant Polymers
,”
J. Appl. Polym. Sci.
,
117
(
3
), pp.
1551
1557
.
22.
Rodvelt
,
G.
,
Yuyi
,
S.
, and
Vangilder
,
C.
,
2015
, “
Use of a Salt-Tolerant Friction Reducer Improves Production in Utica Completions
,”
SPE Eastern Regional Meeting
,
Morgantown, WV,
Paper No. SPE-177296-MS.
23.
Jouenne
,
S.
,
Klimenko
,
A.
, and
Levitt
,
D.
,
2016
, “
Tradeoffs Between Emulsion and Powder Polymers for EOR
,”
SPE Improved Oil Recovery Conference
,
Tulsa, OK,
Paper No. SPE-179631-MS.
24.
Jamshidi
,
H.
, and
Rabiee
,
A.
,
2014
, “
Synthesis and Characterization of Acrylamide-Based Anionic Copolymer and Investigation of Solution Properties
,”
Adv. Mater. Sci. Eng.
,
2014
, pp.
1
6
.
25.
Akbari
,
S.
,
Mahmood
,
S. M.
,
Tan
,
I. M.
,
Ghaedi
,
H.
, and
Ling
,
O. L.
,
2017
, “
Assessment of Polyacrylamide Based Co-polymers Enhanced by Functional Group Modifications With Regards to Salinity and Hardness
,”
Polymers
,
9
(
12
), p.
647
.
26.
Uyanik
,
G. K.
, and
Guler
,
N.
,
2013
, “
A Study on Multiple Linear Regression Analysis
,”
Procedia Soc. Behav. Sci.
,
106
, pp.
234
240
.
27.
Vyas
,
A.
, and
Gupta
,
A. D.
,
2017
, “
Modelling Early Time Rate Decline in Unconventional Reservoirs Using Machine Learning Techniques
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
, Paper No. SPE-188231-MS.
28.
Ghannam
,
M. T.
,
1999
, “
Rheological Properties of Aqueous Polyacrylamide/NaCl Solutions
,”
J. Appl. Polym. Sci.
,
72
(
14
), pp.
1905
1912
.
29.
Lewandowska
,
K.
,
2006
, “
Comparative Studies of Rheological Properties of Polyacrylamide and Partially Hydrolyzed Polyacrylamide Solutions
,”
J. Appl. Polym. Sci.
,
103
(
4
), pp.
2235
2241
.
30.
Gao
,
C.
,
2013
, “
Empirical Correlations for Viscosity of Partially Hydrolyzed Polyacrylamide
,”
J. Petrol. Explor. Prod. Technol.
,
4
, pp.
209
213
. DOI10.1007/s13202-013-0064-z
31.
Zhou
,
J.
,
Baltazar
,
M.
,
Sun
,
H.
, and
Qu
,
Q.
,
2014
, “
Water-Based Environmentally Preferred Friction Reducer in Ultrahigh-TDS Produced Water for Slickwater Fracturing in Shale Reservoirs
,”
SPE/EAGE European Unconventional Conference and Exhibition
,
Vienna, Austria
, Paper No. SPE-167775-MS.
32.
Li
,
L.
,
Saini
,
R.
, and
Mai
,
N.
,
2018
, “
High-TDS Produced Water-Based, Low-Damaging Fracturing Fluids for Applications at 300͒F or Higher
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
, Paper No. SPE-191749-MS.
33.
Montgomery
,
D. C.
,
2013
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
New York
.
34.
Zeynali
,
M. E.
,
Rabii
,
A.
, and
Baharvand
,
H.
,
2004
, “
Synthesis of Partially Hydrolyzed Polyacrylamide and Investigation of Solution Properties (Viscosity Behaviour)
,”
Iran. Polym. J. (Engl. Ed.)
,
13
, pp.
479
484
.
35.
Shalaby
,
S. W.
,
McCormick
,
C. L.
, and
Butler
,
G. B.
,
1991
,
Water-Soluble Polymer
,
ACS
,
Washington, DC
.
36.
Kumari
,
K.
, and
Yadav
,
S.
,
2018
, “
Linear Regression Analysis Study
,”
J. Pract. Cardiovasc. Sci.
,
4
(
1
), pp.
33
36
.
37.
Ostertagova
,
E.
,
2012
, “
Modelling Using Polynomial Regression
,”
Procedia Eng.
,
48
, pp.
500
506
.
38.
Wei
,
J.
,
Chen
,
T.
,
Liu
,
G.
, and
Yang
,
J.
,
2016
, “
Higher-Order Multivariable Polynomial Regression to Estimate Human Affective States
,”
Sci. Rep.
,
6
(
1
), p.
23384
.
39.
Biau
,
G.
,
2012
, “
Analysis of a Random Forests Model
,”
J. Mach. Learn. Res.
,
13
, pp.
1063
1095
.
40.
Couronne
,
R.
,
Probst
,
P.
, and
Boulesteix
,
A. L.
,
2018
, “
Random Forest Versus Logistic Regression: A Large-Scale Benchmark Experiment
,”
BMC Bioinform.
,
19
(
1
).
41.
Mountrakis
,
G.
,
Im
,
J.
, and
Ogole
,
C.
,
2011
, “
Support Vector Machines in Remote Sensing: A Review
,”
ISPRS J. Photogramm. Remote Sens.
,
66
(
3
), pp.
247
259
.
42.
Yu
,
X.
,
Qi
,
Z.
, and
Zhao
,
Y.
,
2013
, “
Support Vector Regression for Newspaper/Magazine Sales Forecasting
,”
Procedia Comput. Sci.
,
17
, pp.
1055
1062
.
43.
Ozbek
,
H.
,
1971
, “
Viscosity of Aqueous Sodium Chloride Solutions From 0–150 °C
,”
ACS 29th Southeast Regional Meeting
,
Tampa, FL
.
You do not currently have access to this content.