Abstract

This paper analyzes the contribution of different turbomachinery loss mechanisms to the overall efficiency of a simple recuperated supercritical carbon dioxide (s-CO2) Brayton cycle for output capacities ranging from 100 kW to 1 GW. The optimum turbomachinery specifications suitable for the specified powers are retrieved using a standard design tool that provides information on various turbomachinery losses. The losses are influenced by operating pressures and mass flowrates, which are unknown a priori. An iterative approach is used to arrive at the turbomachinery efficiency and mass flowrate. Earlier studies have shown the dependence of optimal pressures on heat source and sink temperatures alone. This analysis reveals that design-point optimal cycle pressure ratios differ with varying power outputs due to differences in realizable turbomachinery efficiencies. The information on dominant loss mechanisms provides insights on a viable scale of power generation at which s-CO2 Brayton cycles become worthwhile. Poor turbomachinery efficiencies (less than 80%) render the s-CO2 technology commercially unviable at the sub-MW scale. For higher power scales (10 MW and above), axial machines are found to be appropriate, with corresponding turbomachinery efficiencies greater than 85%. The dominant loss mechanisms also help identify issues related to improving turbomachinery efficiencies at the sub-MW power levels, where the cycle efficiencies are not competitive.

References

1.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.
2.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia National Labs
,
USA
, Report No. SAND2010-0171.
3.
Carlson
,
M.
, and
Alvarez
,
F.
,
2021
, “
Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090904
.
4.
Held
,
T. J.
,
2014
, “
Initial Test Results of a Megawatt-Class Supercritical CO2 Heat Engine
,”
The 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, Sept. 9–10
.
5.
Moore
,
J.
,
Brun
,
K.
,
Evans
,
N.
, and
Kalra
,
C.
,
2015
, “
Development of 1 MWe Supercritical CO2 Test Loop
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition (Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, Vol. 9)
,
ASME
,
Montreal, QC, Canada
,
June 15–19
, No.
V009T36A015
.
6.
Noaman
,
M.
,
Awad
,
O.
,
Morosuk
,
T.
,
Tsatsaronis
,
G.
, and
Salomo
,
S.
,
2021
, “
Identifying the Market Scenarios for Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050906
.
7.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
,
Cambridge, UK
.
8.
Zhu
,
H.-H.
,
Wang
,
K.
, and
He
,
Y.-L.
,
2017
, “
Thermodynamic Analysis and Comparison for Different Direct-Heated Supercritical CO2 Brayton Cycles Integrated Into a Solar Thermal Power Tower System
,”
Energy
,
140
, pp.
144
157
.
9.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p. 041007.
10.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
11.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
12.
Zhou
,
Y.
,
Bao
,
J.
, and
Yang
,
M.
,
2021
, “
Design and Performance Analysis of a Solar-Coal-Fired Complementary Power System Based on the S-CO2 Brayton Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082108
.
13.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
14.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
15.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
16.
Galvas
,
M. R.
,
1973
, “
Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors
,”
NASA TN-D7487 National Aeronautics and Space Administration
,
Washington, DC
.
17.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
18.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics
,
ASME
,
New York
.
19.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors
,
ASME Press
,
New York
.
20.
Moroz
,
L.
,
Govoruschenko
,
Y.
, and
Pagur
,
P.
,
2005
, “
Axial Turbine Stages Design: 1D/2D/3D Simulation, Experiment, Optimization—Design of Single Stage Test Air Turbine Models and Validation of 1D/2D/3D Aerodynamic Computation Results Against Test Data
,”
Proceedings of the ASME Turbo Expo
,
Reno, NV
,
June 6–9
.
21.
Moroz
,
L.
,
Govoruschenko
,
Y.
, and
Pagur
,
P.
,
2006
, “
The Future of Gas Turbine Technology
,”
3rd International Conference
,
Brussels, Belgium
,
Oct. 11–12
.
22.
McKain
,
T.
, and
Holbrook
,
G.
,
2017
,
High Performance 4:1 Pressure ratio Compressor Validation in AxSTREAM® – Softinway Inc., Validation Report EVR-NTP-CC-1711-001
.
23.
Softinway Inc.
,
2011
,
SoftInWay Technical Information Radial Turbine NASA TP1730 Analysis
.
24.
Korpela
,
S. A.
,
2011
,
Principles of Turbomachinery
,
Wiley Online Library
.
25.
Galvas
,
M. R.
,
1972
, “
Analytical Correlation of Centrifugal Compressor Design Geometry for Maximum Efficiency With Specific Speed
,”
National Aeronautics and Space Administration
, NASA TN-D6729.
26.
Ainley
,
D. G.
, and
Mathieson
,
G.C.R.
,
December 1951
,
Aeronautical Research Council Reports and Memoranda–Reports and Memoranda No. 2974, UK
.
27.
Lieblein
,
S.
, and
Roudebush
,
W. H.
,
1956
, “
Theoretical Loss Relations for Low-Speed Two-Dimensional-Cascade Flow
,” NACA Technical Note TN-3662.
28.
Balje
,
O. E.
,
1981
,
Turbomachines. A Guide to Design, Selection and Theory
,
Wiley
,
New York
.
You do not currently have access to this content.