Abstract

Injecting CO2 into the reservoir can not only improve crude oil recovery but also achieve the goal of CO2 geological storage. It can not only reduce the greenhouse effect but also obtain additional economic benefits. From the perspective of minimum miscible pressure, carbon dioxide flooding can be divided into miscible flooding and immiscible flooding, and miscible flooding is widely used in the oil field. The most important condition for miscible flooding is to achieve the minimum miscible pressure (MMP). In the study, combining the particle swarm optimization (PSO) with Gaussian process regression (GPR), a novel intelligent GPR and particle swarm optimization (GPR-PSO) method was proposed to establish the model of predicting the MMP of the CO2 and oil system. The model uses the database with more data than in the previous literature, with 365 data points, and the value range of the data is also wider. Moreover, the accuracy of GPR-PSO model was evaluated by statistical error and graph error and compared with the prediction results of existing models. The results show that compared with other models, the GPR-PSO model has higher accuracy and wider application range, the mean absolute relative error is only 1.66%. Meanwhile, the reliability of the model is verified by the sensitivity analysis of parameters. The results show that the most influential parameter on the prediction results is the reservoir temperature, and the least influential parameter is the critical temperature of injected gas. The GPR-PSO model can be used not only to predict the MMP of CO2 and oil system but also to predict the MMP of other gases and crude oil system.

References

1.
Rathmell
,
J. J.
,
Stalkup
,
F. I.
, and
Hassinger
,
R. C.
,
1971
, “
A Laboratory Investigation of Miscible Displacement by Carbon Dioxide
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
,
New Orleans, LA
,
Oct. 3–6
, Paper No. SPE3483.
2.
Christiansen
,
L.
, and
Haines
,
K.
,
1987
, “
Rapid Measurement of Minimum Miscibility Pressure With the Rising-Bubble Apparatus
,”
SPE J.
,
2
(
10
), pp.
523
527
.
3.
Holm
,
L. W.
, and
Josendal
,
V. A.
,
1974
, “
Mechanisms of Oil Displacement by Carbon Dioxide
,”
J. Pet. Technol.
,
26
(
12
), pp.
1427
1438
.
4.
Rao
,
D. N.
,
1997
, “
A New Technique of Vanishing Interfacial Tension for Miscibility Determination
,”
Fluid Phase Equilib.
,
139
(
12
), pp.
311
324
.
5.
Neshin
,
M. G. S.
,
2014
, “
Modified Vanishing Interfacial Tension (VIT) Test for CO2-Oil Minimum Miscibility Pressure (MMP) Measurement
,”
J. Nat. Gas Sci. Eng.
,
20
, pp.
92
98
.
6.
Huang
,
Y. F.
,
Huang
,
G. H.
,
Dong
,
M. Z.
, and
Feng
,
G. M.
,
2003
, “
Development of an Artificial Neural Network Model for Predicting Minimum Miscibility Pressure in CO2 Flooding
,”
J. Nat. Gas Sci. Eng.
,
37
(
1–2
), pp.
83
95
.
7.
Emera
,
K.
, and
Sarma
,
K.
,
2005
, “
Use of Genetic Algorithm to Estimate CO2-Oil Minimum Miscibility Pressure—A Key Parameter in Design of CO2 Miscible Flood
,”
J. Pet. Sci. Eng.
,
46
(
12
), pp.
37
52
.
8.
Shokir
,
E. M.
,
2007
, “
CO2-Oil Minimum Miscibility Pressure Model for Impure and Pure CO2 Streams
,”
J. Pet. Sci. Eng.
,
58
(
12
), pp.
173
185
.
9.
Mousavi
,
S. A.
,
2008
, “
Minimum Miscibility Pressure Prediction Based on a Hybrid Neural Genetic Algorithm
,”
Chem. Eng. Res. Des.
,
86
(
2
), pp.
173
185
.
10.
Shokrollahi
,
A.
,
Arabloo
,
M.
,
Gharagheizi
,
F.
, and
Mohammadi
,
A. H.
,
2013
, “
Intelligent Model for Prediction of CO2-Reservoir Oil Minimum Miscibility Pressure
,”
Fuel
,
112
, pp.
375
384
.
11.
Kamari
,
A.
,
Arabloo
,
M.
,
Shokrollahi
,
A.
,
Gharagheizi
,
F.
, and
Mohammadi
,
A. H.
,
2015
, “
Rapid Method to Estimate the Minimum Miscibility Pressure (MMP) in Live Reservoir Oil Systems During CO2 Flooding
,”
Fuel
,
153
, pp.
310
319
.
12.
Mohammad
,
F.
, and
Shahab
,
A.
,
2016
, “
On the Determination of CO2-Crude Oil Minimum Miscibility Pressure Using Genetic Programming Combined With Constrained Multivariable Search Methods
,”
Fuel
,
173
, pp.
180
188
.
13.
Abdorreza
,
K. T.
, and
Sassan
,
H.
,
2017
, “
Application of Adaptive Neuro Fuzzy Interface System Optimized With Evolutionary Algorithms for Modeling CO2-Crude Oil Minimum Miscibility Pressure
,”
Fuel
,
205
, pp.
34
45
.
14.
Chen
,
G.
,
Fu
,
K.
,
Zhang
,
L.
,
Sema
,
T.
,
Li
,
C.
,
Tontiwachwuthikul
,
P.
, and
Idem
,
R.
,
2014
, “
The Genetic Algorithm Based Back Propagation Neural Network for MMP Prediction in CO2-EOR Process
,”
Fuel
,
126
, pp.
202
212
.
15.
Bian
,
X. Q.
,
Han
,
B.
,
Du
,
Z. M.
,
Jaubert
,
J.-N.
, and
Li
,
M.-J.
,
2016
, “
Integrating Support Vector Regression With Genetic Algorithm for CO2-Oil Minimum Miscibility Pressure (MMP) in Pure and Impure CO2 Streams
,”
Fuel
,
182
, pp.
550
557
.
16.
Gardner
,
J. W.
,
Orr
,
F. M.
, and
Patel
,
P. D.
,
1981
, “
The Effect of Phase Behavior on CO2-Flood Displacement Efficiency
,”
SPE J.
,
33
(
11
), pp.
2067
2081
.
17.
Alston
,
R. B.
,
Kokolis
,
G. P.
, and
James
,
C. F.
,
1985
, “
CO2 Minimum Miscibility Pressure: A Correlation for Impure CO2 Streams and Live Oil Systems
,”
Soc. Pet. Eng. J.
,
25
(
2
), pp.
268
274
.
18.
Dong
,
M.
,
Huang
,
S.
,
Dyer
,
S. B.
, and
Mourits
,
F. M.
,
2001
, “
A Comparison of CO2 Minimum Miscibility Pressure Determinations for Weyburn Crude Oil
,”
J. Pet. Sci. Eng.
,
31
(
1
), pp.
13
22
.
19.
Li
,
H.
,
Qin
,
J.
, and
Yang
,
D.
,
2012
, “
An Improved CO2-Oil Minimum Miscibility Pressure Correlation for Live and Dead Crude Oils
,”
Ind. Eng. Chem. Res.
,
51
(
8
), pp.
3516
3523
.
20.
Cardenas
,
R. L.
,
Alston
,
R. B.
,
Nute
,
A. J.
, and
Kokolis
,
G.P.
,
1984
, “
Laboratory Design of a Gravity-Stable Miscible CO2 Process
,”
SPE J.
,
36
(
1
), pp.
111
118
.
21.
Jacobson
,
H. A.
,
1972
, “
Acid Gases and Their Contribution to Miscibility Petroleum Society of Canada
,”
J. Can. Pet. Technol.
,
11
(
2
), pp.
56
59
.
22.
Graue
,
D. J.
, and
Zana
,
E. T.
,
1981
, “
Study of a Possible CO2 Flood in Rangely Field
,”
SPE J.
,
33
(
7
), pp.
1312
1318
.
23.
Metcalfe
,
R.
,
1982
, “
Effects of Impurities on Minimum Miscibility Pressures and Minimum Enrichment Levels for CO2 and Rich-Gas Displacements
,”
SPE J.
,
22
(
7
), pp.
219
225
.
24.
Gharbi
,
R.
, and
Elsharkawy
,
A.
,
1999
, “
Neural Network Model for Estimating the PVT Properties of Middle East Crude Oils
,”
SPE J.
,
2
(
3
), pp.
255
265
.
25.
Bon
,
J.
,
Emera
,
M. K.
, and
Sarma
,
H. K.
,
2006
, “
An Experimental Study and Genetic Algorithm (GA) Correlation to Explore the Effect of nC5 on Impure CO2 Minimum Miscibility Pressure (MMP)
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
,
Sept. 11–13
, Paper No. SPE101036.
26.
Zhikun
,
H.
,
Guangbin
,
L.
,
Xijing
,
Z.
, and
Minghao
,
W.
,
2013
, “
Review of Gaussian Process Regression Methods
,”
Control Decis.
,
28
(
8
), pp.
1121
1129
.
27.
Jianmin
,
W.
, and
Jin
,
Z.
,
2018
, “
Deformation Intelligent Prediction Model Based on Gaussian Process Regression and Its Application
,”
J. Wuhan Univ. Inf. Sci. Ed.
,
43
(
2
), pp.
248
254
.
28.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks Vol. IV
,
Piscataway, NJ
,
Feb. 10–12
, pp.
1942
1948
.
29.
Yellig
,
W. F.
, and
Metcalfe
,
R. S.
,
1980
, “
Determination and Prediction of CO2 Minimum Miscibility Pressures
,”
J. Pet. Technol.
,
32
(
1
), pp.
160
168
.
30.
Sebastian
,
H. M.
,
Wenger
,
R. S.
, and
Renner
,
T. A.
,
1985
, “
Correlation of Minimum Miscibility Pressure for Impure CO2 Streams
,”
J. Pet. Technol.
,
37
(
11
), pp.
2076
2082
.
31.
Glaso
,
O.
,
1985
, “
Generalized Minimum Miscibility Pressure
,”
SPE J.
,
25
(
6
), pp.
927
934
.
32.
Cronquist
,
C.
,
1978
, “
Carbon Dioxide Dynamic Displacement With Light Reservoir Oil
,”
SPE J.
,
35
(
9
), pp.
981
989
.
33.
Lee
,
J.
,
1979
, “
Effectiveness of Carbon Dioxide Displacement Under Miscible and Immiscible Conditions
,”
J. Can. Pet. Technol.
,
46
(
2
), pp.
35
40
.
You do not currently have access to this content.