Abstract

Non-uniformity of the exit flow temperature represents one of the significant damages to gas-turbine components, particularly turbine blades. This may occur in the course of gas-turbine operation. This paper aims to provide passive techniques by modifying the combustor design rather than changing the flow parameters to improve the thermal uniformity and turbine blades to reduce thermal stresses and increase turbine blades’ life span. An acceptable agreement between the numerical and experimental results has been achieved, and the agreement includes the velocity and temperature profile. Four different angles have been tested numerically and experimentally with a maximum error of 5% at two different Reynolds numbers. Designing the outer combustor surface with a 45-deg angle bend can give a more uniform temperature distribution of 37% higher than the basic design with only a 0.5% higher pressure drop.

References

1.
Carter
,
T. J.
,
2005
, “
Common Failures in Gas Turbine Blades
,”
Eng. Fail. Anal.
,
12
(
2
), pp.
237
247
.
2.
Pollock
,
T. M.
, and
Tin
,
S.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
,”
J. Propuls. Power
,
22
(
2
), pp.
361
374
.
3.
Amano
,
R. S.
,
Salem
,
A. R.
, and
Nourin
,
F.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With In-line and Staggered Nozzle Array
,”
Int. J. Energy Clean Environ.
,
21
(
3
), pp.
169
182
.
4.
Nourin
,
F.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
5.
Amano
,
R. S.
,
2008
,
Advanced Computational Methods and Experiments in Heat Transfer X
, Vol.
61
,
WIT Press
,
Southampton, UK
, pp.
149
157
.
6.
Nourin
,
F.
, and
Amano
,
R. S.
,
2022
, “
Experimental and Large Eddy Simulation Study for Visualizing Complex Flow Phenomena of Gas Turbine Internal Blade Cooling Channel With No Bendssors
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062104
.
7.
Bogdan
,
M.
, and
Błachnio
,
J.
,
2010
, “
A non-Destructive Method to Assess Condition of Gas Turbine Blades, Based on the Analysis of Blade-Surface Image
,”
Russ. J. Nondestruct. Test.
,
46
(
11
), pp.
860
866
.
8.
Amano
,
R. S.
, and
Singh
,
S. N.
,
1999
, “
Combustion Process in Perforated Porous Mat Flow in a Turbine Combustor
,”
ASME 1999 Design Engineering Technical Conferences
,
Las Vegas, NV
,
Sept. 12–16
.
9.
Amano
,
R. S.
, and
Guntur
,
K. S.
,
2011
, “
Study of Uniform Heating Using Porous Combustion Procedures
,”
Proceedings of the 9th AIAA JPC/IECEC
,
San Diego, CA
.
10.
Srinivasan
,
R.
,
Berenfeld
,
A.
, and
Mongia
,
H. C.
,
1982
, “
Dilution Jet Mixing Program: Phase I Report
,” NASA CR-168031.
11.
Holdeman
,
J. D.
,
Reynolds
,
R.
, and
White
,
C.
,
1987
, “
A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing
,” AIAA Paper No. 87-1953; also NASA TM 89878.
12.
Amano
,
R. S.
,
Gupta
,
A.
,
Ibrahim
,
M. S.
,
Rux
,
A.
,
Lang
,
M.
, and
Moll
,
T.
,
2012
, “
Numerical Investigation and Experimental Lab Setting-Up for Analysis of Gas Turbine Combustor Dilution Process
,”
Proceedings of ASME 2012 DETC/CIE, DETC2012-71526
,
Chicago, IL
,
Aug. 12–15
.
13.
Bain
,
D. B.
,
Smith
,
C. E.
, and
Holdeman
,
J. D.
,
1992
, “
CFD Mixing Analysis of Jets Injected from Straight and Slanted Slots into Confined Crossflow in Rectangular Ducts
,” AIAA Paper No. 92-3087; also NASA TM 105699.
14.
Bain
,
D. B.
,
Smith
,
C. E.
, and
Holdeman
,
J. D.
,
1993
, “
CFD Mixing Analysis of Axially Opposed Rows of Jets Injected into Confined Crossflow
,” AIAA Paper No. 93-2044, also NASA TM 106179.
15.
Bain
,
D. B.
,
Smith
,
C. E.
, and
Holdeman
,
J. D.
,
1994
, “
CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts
,” AIAA Paper No. 94-0218, also NASA TM 106434.
16.
Bain
,
D. B.
,
Smith
,
C. E.
, and
Holdeman
,
J. D.
,
1995
, “
Jet Mixing and Emission Characteristics of Transverse Jets in Annular and Cylindrical Confined Crossflow
,” AIAA Paper No. 95-2995; also NASA TM 106976.
17.
Holdeman
,
J. D.
,
Liscinsky
,
D. S.
,
Oechsle
,
V. L.
,
Samuelsen
,
G. S.
, and
Smith
,
C. E.
,
1996
, “
Mixing of Multiple Jets With a Confined Subsonic Crossflow in a Cylindrical Duct
,” ASME Paper No. 96-GT-482; also NASA TM 107185.
18.
Pokharel
,
P.
, and
Acharya
,
S.
,
2021
, “
Dynamics of Circular and Rectangular Jets in Crossflow
,”
Comput. Fluids
,
230
, pp.
2
3
.
19.
Hatch
,
M. S.
,
Sowa
,
W. A.
, and
Samuelsen
,
G. S.
,
1995
, “
Geometry and Flow Influences on Jet Mixing in a Cylindrical Duct
,”
J. Propul. Power
,
11
(
3
), pp.
393
402
.
20.
Crocker
,
D. S.
, and
Smith
,
C. E.
,
1995
, “
Numerical Investigation of Enhanced Dilution Zone Mixing in a Reverse Flow Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
117
(
2
), pp.
272
281
.
21.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME. J. Energy Resour. Technol
,
142
(
8
), p.
083001
.
22.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optimization
,”
ASME. J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
23.
Paysant
,
R.
,
Laroche
,
E.
,
Troyes
,
J.
,
Donjat
,
D.
,
Millan
,
P.
, and
Buet
,
P.
,
2021
, “
Scale Resolving Simulations of a High-Temperature Turbulent jet in a Cold Crossflow: Comparison of Two Approaches
,”
Int. J. Heat Fluid Flow
,
92
, p.
108862
.
24.
Holdeman
,
J. D.
,
Walker
,
R. E.
, and
Kors
,
D. L.
,
1973
, “
Mixing of Multiple Dilution Jets With a Hot Primary Airstream for Gas Turbine Combustors
,” AIAA Paper No. 73-1249.
25.
Alkhafaji
,
A. A.
,
Selim
,
O. M.
,
Amano
,
R. S.
,
Strickler
,
J. R.
,
Hinow
,
P.
,
Jiang
,
H.
,
Sikkel
,
P. C.
, and
Kohls
,
N.
,
2021
, “
Mass Transfer Performance of a Marine Zooplankton Olfactometer
,”
ASME. J. Energy Resour. Technol.
,
143
(
11
), p.
112102
.
26.
Khalil
,
E. E.
,
Bialy
,
E.
,
Abdelmaksoud
,
W.
, and
Selim
,
O.
,
2016
, “
Smoke Behaviour and Management in Domed Mosques
,”
Proceedings of the 54th AIAA Aerospace Sciences Meeting.
,
San Diego, CA
,
Jan. 7–11
.
27.
Soares
,
C.
,
2014
,
Gas Turbines: A Handbook of Air, Land and Sea Applications
, 2nd ed.,
Elselvier
,
Oxford, UK
.
28.
Amano
,
R. S.
,
Salem
,
A.
,
Nourin
,
F.
, and
Abousabae
,
M.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour.Technol.
,
143
(
1
), p.
012103
.
29.
Amano
,
R. S.
, and
Kumar
,
S.
,
2014
, “
Experimental Investigation of Heat Transfer and Flow Using V and Broken V Ribs Within Gas Turbine Blade Cooling Passage
,”
Heat Mass Transfer.
,
51
(
5
), pp.
631
647
.
30.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
.
31.
Nourin
,
F.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
32.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
33.
Amano
,
R. S.
, and
Singh
,
S. N.
,
1999
, “
Combustion Process in Perforated Porous Mat Flow in a Turbine Combustor
,” ASME DETC199/CIE-9052, Las Vegas, NV.
34.
Xie
,
J. H.
,
Amano
,
R. S.
, and
Singh
,
S.
,
2005
, “
Simulation of Gas Turbine Reacting Flows With Porous Inserts
,”
Proceedings of ASME Power, McCormick Place Convention Center
,
Chicago, IL
, PWR2005-50198.
35.
Xie
,
J.
,
Amano
,
R. S.
,
Singh
,
S.
, and
Peck
,
R.
,
2005
, “
Reduction of Gaseous Emission From Power Turbine Combustor
,”
ASME 2005 Summer Heat Transfer Conference, HT2005-72696
,
San Francisco, CA
,
July 17–22
.
36.
Holdeman
,
J. D.
,
1983
, “
Perspectives on the Mixing of a Row of Jets With a Confined Crossflow
,” AIAA Paper No. 83-1200, also NASA TM 83457.
37.
Srinivasan
,
R.
,
Coleman
,
E.
, and
Johnson
,
K.
,
1984
, “
Dilution Jet Mixing Program: Phase II Report
,” NASA CR-174624.
38.
Srinivasan
,
R.
,
Myers
,
G.
,
Coleman
,
E.
, and
White
,
C.
,
1985
, “
Dilution Jet Mixing Program: Phase III Report
,” NASA CR-174884.
39.
Srinivasan
,
R.
, and
White
,
C.
,
1986
, “
Dilution Jet Mixing Program: Supplementary Report
,” NASA CR-175043.
40.
Holdeman
,
J. D.
,
1986
, “
Modeling Dilution Jet Flowfields
,”
J. Propul. Power
,
2
(
1
), pp.
4
10
.
41.
Hatch
,
M. S.
,
Sowa
,
W. A.
,
Samuelsen
,
G. S.
, and
Holdeman
,
J. D.
,
1992
, “
Jet Mixing into a Heated Cross Flow in a Cylindrical Duct: Influence of Geometry and Flow Variations
,” AIAA Paper No. 92-0773, 6–9; also NASA TM 105390.
42.
Liscinsky
,
D. S.
, and
True
,
B.
,
1993
, “
Experimental Investigation of Crossflow Jet Mixing in a Rectangular Duct
,” AIAA Paper No. 93-2037; also NASA TM 106152.
43.
Kroll
,
J. T.
,
Sowa
,
W. A.
,
Samuelsen
,
G. S.
, and
Holdeman
,
J. D.
Optimization of Circular Orifice Jets Mixing into a Heated Cross Flow in a Cylindrical Duct
,” AIAA Paper No. 93-0249, 1993; also NASA TM 105984.
44.
Gupta
,
A.
, and
Amano
,
R. S.
,
2013
, “
Verification and Validation of CFD Model of Dilution Process in a GT Combustor
,”
V&V2013-2416, ASME Verification and Validation Symposium
,
Las Vegas, NV
.
45.
Amano
,
R. S.
,
Ibrahim
,
M. S.
,
Gupta
,
A.
,
Wiegand
,
B.
,
Argires
,
J.
, and
Ramos
,
J.
,
2013
, “
Experimental Analysis of the Dilution Process in a Gas Turbine Combustor Simulator
,”
Proceedings of the 51st AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 7–10
.
46.
Amano
,
R. S.
,
Gupta
,
A.
,
Saeed
,
M.
, and
Wiegand
,
B.
,
2013
, “
Numerical and Experimental Study of the Effect of Momentum-Flux Ratio on Temperature Uniformity in the Combustor
,”
11th International Energy Conversion Engineering Conference
,
San Jose, CA
,
July 15–17
.
47.
Amano
,
R. S.
,
Gupta
,
A.
, and
Ibrahim
,
M.
,
2015
, “
Experimental Study of Novel Passive Control Methods to Improve Combustor Exit Temperature Uniformity
,”
Heat Mass Transfer
,
5
(
1
), pp.
23
32
.
48.
ElGammal
,
T.
, and
Amano
,
R. S.
,
2016
, “
Comparative Study of Using Streamlined Bodies as a Passive Enhancer in Combustor Dilution System
,”
AIAA SciTech
,
San Diego, CA
,
Jan. 4–8
.
49.
Zhao
,
J.
,
Lin
,
W.
,
Yan
,
C.
,
Zheng
,
Z.
,
Tong
,
Y.
, and
Nie
,
W.
,
2022
, “
Mixing Enhancement Mechanism of Combined H2–Water Jets in Supersonic Crossflows in a Combustor With an Expanded Section
,”
Int. J. Hydrog. Energy
,
47
(
19
), pp.
10747
10761
.
50.
Elgammal
,
T.
, and
Amano
,
R. S.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-in-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
.
51.
Elgammal
,
T.
,
Ibrahim
,
M. S.
,
Amano
,
R. S.
,
Rowland
,
D.
,
Puls
,
K. S.
, and
Alabbas
,
M.
,
2016
, “
Comparative Study of Using Streamlined Bodies as a Passive Enhancer in Combustor Dilution System
,”
Proceedings of the 54th AIAA Aerospace Sciences Meeting, AIAA Sci Tech
,
San Diego, CA
,
Jan. 4–8
.
52.
Selim
,
M. O.
, and
Amano
,
R. S.
,
2019
, “
Control Methods to Improve Combustor Exit Temperature Uniformity
,”
AIAA SciTech
,
San Diego, CA
,
Jan.7–11, 2019
.
53.
Morris
,
R. M.
,
Snyman
,
J.
, and
Meyer
,
J.
,
2007
, “
Jets in Crossflow Mixing Analysis Using Computational Fluid Dynamics and Mathematical Optimization
,”
J. Propul. Power
,
23
(
3
), pp.
618
628
.
54.
Selim
,
O. M.
,
Khalil
,
E. E.
,
Bialy
,
E.
, and
Abdelmaksoud
,
W.
,
2016
, Smoke Behaviour and Management in Large-Domed Mosques. Current Environmental Engineering, https://www.eurekaselect.net/article/74181
You do not currently have access to this content.