Abstract

The study presents an experimental and numerical investigation to determine the role of adiabatic lame temperature on controlling the operability of a micromixer-based gas turbine model combustor holding premixed CH4/CO2/O2 non-swirl jet flame for carbon capture. The experimental test rig consists of a mixing pipe and multihole/micromixer-like burner of 61 tubes. The numerical aspect of the study is achieved using the computational fluid dynamic (CFD) approach. Models of the ansys Fluent are used to solve elliptical governing equations involved in the combustion system. Since flames under consideration are jet premixed releasing into a quiescent atmosphere, the partially premixed combustion of species model is used. Large eddy simulation (LES) is used as the turbulence model while radiative transfer equation (RTE) is solved using discrete ordinate (DO). A good agreement between experimental and numerical results is achieved. Results indicated that adiabatic flame temperature (Tad) controls the flame macrostructure, oxygen fraction (OF) controls the peak of the product formation rate rather than Tad, and positions of OH radical reaffirmed that Tad controls the flame macrostructure and increasing the OF leads to reaction rate dominancy and, hence, increases the Damkohler number.

References

1.
International Energy Agency
,
2020
, “
Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2
Emissions
, www.iea.org/corrigenda.
2.
Araoye
,
A. A.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ben-Mansour
,
R.
,
2021
, “
Experimental and Numerical Investigation of Stability and Emissions of Hydrogen-Assisted Oxy-Methane Flames in a Multi-hole Model Gas-Turbine Burner
,”
Int. J. Hydrogen Energy
,
46
(
38
), pp.
20093
20106
.
3.
Nader
,
S.
,
2009
, “
Paths to a Low-Carbon Economy—The Masdar Example
,”
Energy Procedia
,
1
(
1
), pp.
3951
3958
.
4.
Litvinenko
,
V.
,
2020
, “
The Role of Hydrocarbons in the Global Energy Agenda : The Focus on Liquefied Natural Gas
,”
Resources
,
9
(
5
), p.
22
.
5.
Asmelash
,
H. B.
,
2016
, “
The G7’s Pledge to End Fossil Fuel Subsidies by 2025: Mere Rhetoric or a Sign of Post-Paris Momentum?
,”
ESIL Reflections
,
5
(
8
), pp.
1
7
.
6.
Whitley
,
S.
,
Chen
,
H.
,
Doukas
,
A.
,
Gençsü
,
I.
,
Gerasimchuk
,
I.
,
Touchette
,
Y.
, and
Worrall
,
L.
,
2018
,
G7 Fossil Fuel Subsidy Scorecard: Tracking the Phase-Out of Fiscal Support and Public Finance for Oil, Gas and Coal
, International Institute for Sustainable Development, Winnipeg, MB, Canada.
7.
Burrows
,
L.
,
Kotani
,
I.
,
Zorlu
,
P.
,
Popp
,
R.
,
Patuleia
,
A.
, and
Littlecott
,
C.
,
2019
,
G7 Coal Scorecard—Fifth Edition: Coal Finance Heads for the Exit
, London, UK.
8.
Yu
,
X.
,
Yang
,
J.
,
Yan
,
J.
, and
Tu
,
S.-T.
,
2015
, “
Membrane Technologies for CO2 Capture
,”
Handbook of Clean Energy Systems
,
J.
Yan
, ed.,
Wiley & Sons
,
Hoboken, NJ
.
9.
Gan
,
N.
, and
Yeung
,
J.
, n.d.,
Once in a Thousand Years’ Rains Devastated Central China, But There Is Little Talk of Climate Change
. CNN. https://edition.cnn.com/2021/07/23/china/china-flood-climate-change-mic-intl-hnk/index.html
10.
Zhang
,
Z.
,
Wang
,
T.
,
Blunt
,
M. J.
,
Anthony
,
E. J.
,
Park
,
A. A.
,
Hughes
,
R. W.
,
Webley
,
P. A.
, and
Yan
,
J.
,
2020
, “
Advances in Carbon Capture, Utilization and Storage
,”
Appl. Energy
,
278
, pp.
115627
.
11.
Li
,
H.
,
Dong
,
B.
,
Yu
,
Z.
,
Yan
,
J.
, and
Zhu
,
K.
,
2019
, “
Thermo-Physical Properties of CO2 Mixtures and Their Impacts on CO2 Capture, Transport and Storage: Progress Since 2011
,”
Appl. Energy
,
255
, p.
113789
.
12.
Yan
,
J.
, and
Zhang
,
Z.
,
2019
, “
Carbon Capture, Utilization and Storage (CCUS)
,”
Appl. Energy
,
235
, pp.
1289
1299
.
13.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012201
.
14.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Jin
,
B.
, and
Wang
,
X.
,
2021
, “
Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080802
.
15.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ibrahim
,
A. H.
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially-Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062301
.
16.
Strakey
,
P. A.
,
2019
, “
Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
.
17.
Rahman
,
R. K.
,
Barak
,
S.
,
Manikantachari
,
K. R. V.
(Raghu),
Ninnemann
,
E.
,
Hosangadi
,
A.
,
Zambon
,
A.
, and
Vasu
,
S. S.
,
2020
, “
Probing the Effects of NOx and SOx Impurities on Oxy-Fuel Combustion in Supercritical CO2: Shock Tube Experiments and Chemical Kinetic Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122302
.
18.
Riaza
,
J.
,
Gil
,
M. V.
,
Álvarez
,
L.
,
Pevida
,
C.
,
Pis
,
J. J.
, and
Rubiera
,
F.
,
2012
, “
Oxy-Fuel Combustion of Coal and Biomass Blends
,”
Energy
,
41
(
1
), pp.
429
435
.
19.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Alvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Combustion of Single Biomass Particles in Air and in Oxy-Fuel Conditions
,”
Biomass Bioenergy
,
64
, pp.
162
174
.
20.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A.
, and
Habib
,
M. A.
,
2016
, “
Characteristics of H2-Enriched CH4-O2 Diffusion Flames in a Swirl-Stabilized Gas Turbine Combustor: Experimental and Numerical Study
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20418
20432
.
21.
Aliyu
,
M.
,
Abdelhafez
,
A.
,
Said
,
S. A. M.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Mansir
,
I. B.
,
2019
, “
Characteristics of Oxyfuel Combustion in Lean-Premixed Multihole Burners
,”
Energy Fuels
,
33
(
11
), pp.
11948
11958
.
22.
Yin
,
C.
, and
Yan
,
J.
,
2016
, “
Oxy-fuel Combustion of Pulverized Fuels : Combustion Fundamentals and Modeling
,”
Appl. Energy
,
162
, pp.
742
762
.
23.
Said
,
S. A.
,
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Mansir
,
I. B.
,
2018
, “
Experimental Investigation of the Stability of a Turbulent Diffusion Flame in a Gas Turbine Combustor
,”
Energy
,
157
, pp.
904
913
.
24.
Liu
,
C. Y.
,
Chen
,
G.
,
Sipöcz
,
N.
,
Assadi
,
M.
, and
Bai
,
X. S.
,
2012
, “
Characteristics of Oxy-Fuel Combustion in Gas Turbines
,”
Appl. Energy
,
89
(
1
), pp.
387
394
.
25.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2 Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
, pp.
626
634
.
26.
Panahi
,
A.
,
Toole
,
N.
,
Wang
,
X.
, and
Levendis
,
Y. A.
,
2020
, “
On the Minimum Oxygen Requirements for Oxy-Combustion of Single Particles of Torrefied Biomass
,”
Combust. Flame
,
213
, pp.
426
440
.
27.
Riaza
,
J.
,
Ajmi
,
M.
,
Gibbins
,
J.
, and
Chalmers
,
H.
,
2017
, “
Ignition and Combustion of Single Particles of Coal and Biomass Under O2/CO2 Atmospheres
,”
Energy Procedia
,
114
, pp.
6067
6073
.
28.
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
, and
Habib
,
M. A.
,
2018
, “
Adiabatic Flame Temperature for Controlling the Macrostructures and Stabilization Modes of Premixed Methane Flames in a Model Gas-Turbine Combustor
,”
Energy Fuels
,
32
(
7
), pp.
7868
7877
.
29.
Abdelhafez
,
A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2018
, “
Stability map and Shape of Premixed CH4/O2/CO2 Flames in a Model gas-Turbine Combustor
,”
Appl. Energy
,
215
, pp.
63
74
.
30.
Poinsot
,
T.
, and
Veynante
,
D.
, 2015,
Theoretical and Numerical Combustion
, 2nd ed.,
RT Edwards Inc.
,
Dallas, TX
.
31.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
453
482
.
32.
Knudsen
,
E.
,
Kim
,
S. H.
, and
Pitsch
,
H.
,
2010
, “
An Analysis of Premixed Flamelet Models for Large Eddy Simulation of Turbulent Combustion
,”
Physics of Fluids
,
22
(
11
), p.
115109
.
33.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
537
547
.
34.
Schmitt
,
T.
,
Sadiki
,
A.
,
Fiorina
,
B.
, and
Veynante
,
D.
,
2013
, “
Impact of Dynamic Wrinkling Model on the Prediction Accuracy Using the F-TACLES Combustion Model in Swirling Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1261
1268
.
35.
Vicquelin
,
R.
,
Fiorina
,
B.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2009
, “
Coupling Tabulated Chemistry With Large Eddy Simulation of Turbulent Reactive Flows
,”
C. R. Mec.
,
337
(
6–7
), pp.
329
339
.
36.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdic
,
A.
,
Janicka
,
J.
,
Geyer
,
D.
, et al
,
2015
, “
Challenging Modeling Strategies for LES of Non-adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.
37.
Lapointe
,
S.
, and
Blanquart
,
G.
,
2017
, “
A Priori Filtered Chemical Source Term Modeling for LES of High Karlovitz Number Premixed Flames
,”
Combust. Flame
,
176
, pp.
500
510
.
38.
Breussin
,
F.
,
Lallemant
,
N.
, and
Weber
,
R.
,
2000
, “
Computing of Oxy-natural Gas Flames Using Both a Global Combustion Scheme and a Chemical Equilibrium Procedure
,”
Combust. Sci. Technol.
,
160
(
1
), pp.
369
397
.
39.
Chakraborty
,
S.
,
Chakraborty
,
N.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2003
, “
Studies on Turbulent Momentum, Heat and Species Transport During Binary Alloy Solidification in a Top-Cooled Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1115
1137
.
40.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
41.
ANSYS, I
,
2013
, ANSYS Fluent Theory Guide.
Vol. 15
,
ANSYS
,
Canonsburg, PA
.
42.
Chen
,
L.
, and
Ghoniem
,
A. F.
,
2012
, “
Simulation of Oxy-coal Combustion in a 100 KWth Test Facility Using RANS and LES: A Validation Study
,”
Energy Fuels
,
26
(
8
), pp.
4783
4798
.
43.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous Oxy-fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
14
), pp.
2084
2094
.
44.
Rajhi
,
M. A.
,
Ben-Mansour
,
R.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Andersson
,
K.
,
2014
, “
Evaluation of Gas Radiation Models in CFD Modeling of Oxy-combustion
,”
Energy Convers. Manage.
,
81
, pp.
83
97
.
45.
Ziniont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
46.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers
,”
Combust. Explos. Shock Waves
,
15
(
3
), pp.
305
311
.
47.
Xue
,
H.
,
Ho
,
J. C.
, and
Cheng
,
Y. M.
,
2001
, “
Comparison of Different Combustion Models in Enclosure Fire Simulation
,”
Fire Saf. J.
,
36
(
1
), pp.
37
54
.
48.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
,
48
, pp.
1
26
.
49.
Gaitonde
,
U.
,
2008
,
Quality Criteria for Large Eddy Simulation
, First Year Transfer Report, School of MACE, University of Manchester.
You do not currently have access to this content.