Abstract

Triboelectric nanogenerators (TENGs) are widely applied to latest nanogenerators which are based on contact electrification (CE). In order to predict the working process of TENGs effectively, this paper proposes a dynamics model to simulate the dynamic mechanism of CE. Taking Fe and polytetrafluoroethylene (PTFE) as contact materials, the field emission under a strong electric field could occur when the interface distance is small enough. The transferred charges in steady state and the differences of interface barrier are calculated by self-consistent field (SCF) method. The molecular dynamics (MD) simulation is carried out under the contact pressure and electric field. The structure results of MD simulation and the electric fields obtained by SCF calculation are the input parameters for each other which run alternately. According to dynamic interface distances and the differences of interface barrier, the dynamic transferred charges can be finally predicted by tunnel current density. The results reveal that the amounts of transferred electrons are positively corresponded to the external pressure and the energy conversion efficiency will reach the extreme value when the pressure is near 130 MPa.

References

1.
Zou
,
H.
,
Zhang
,
Y.
,
Guo
,
L.
,
Wang
,
P.
,
He
,
X.
,
Dai
,
G.
,
Zheng
,
H.
, et al
,
2019
, “
Quantifying the Triboelectric Series
,”
Nat. Commun.
,
10
(
1
), pp.
1
9
.
2.
Zou
,
H.
,
Guo
,
L.
,
Xue
,
H.
,
Zhang
,
Y.
,
Shen
,
X.
,
Liu
,
X.
,
Wang
,
P.
, et al
,
2020
, “
Quantifying and Understanding the Triboelectric Series of Inorganic Non-Metallic Materials
,”
Nat. Commun.
,
11
(
1
), pp.
1
7
.
3.
Xie
,
Z.
,
Zeng
,
Z.
,
Wang
,
Y.
,
Yang
,
W.
,
Xu
,
Y.
,
Lu
,
X.
,
Cheng
,
T.
,
Zhao
,
H.
, and
Wang
,
Z. L.
,
2020
, “
Novel Sweep-Type Triboelectric Nanogenerator Utilizing Single Freewheel for Random Triggering Motion Energy Harvesting and Driver Habits Monitoring
,”
Nano Energy
,
68
, p.
104360
.
4.
Zhou
,
Y. S.
,
Liu
,
Y.
,
Zhu
,
G.
,
Lin
,
Z.
,
Pan
,
C.
,
Jing
,
Q.
, and
Wang
,
Z. L.
,
2013
, “
In Situ Quantitative Study of Nanoscale Triboelectrification and Patterning
,”
Nano Lett.
,
13
(
6
), pp.
2771
2776
.
5.
Niu
,
S.
,
Liu
,
Y.
,
Zhou
,
Y. S.
,
Wang
,
S.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2015
, “
Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage
,”
IEEE T. Electron Dev.
,
62
(
2
), pp.
641
647
.
6.
Xu
,
C.
,
Zhang
,
B.
,
Wang
,
A. C.
,
Cai
,
W.
,
Zi
,
Y.
,
Feng
,
P.
, and
Wang
,
Z. L.
,
2019
, “
Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification
,”
Adv. Funct. Mater.
,
29
(
29
), p.
1903142
.
7.
Shen
,
X.
,
Wang
,
A. E.
,
Sankaran
,
R. M.
, and
Lacks
,
D. J.
,
2016
, “
First-Principles Calculation of Contact Electrification and Validation by Experiment
,”
J. Electrostat.
,
82
, pp.
11
16
.
8.
Zhang
,
Y.
, and
Shao
,
T.
,
2013
, “
Effect of Contact Deformation on Contact Electrification: A First-Principles Calculation
,”
J. Phys. D: Appl. Phys.
,
46
(
23
), p.
235304
.
9.
Wu
,
J.
,
Wang
,
X.
,
Li
,
H.
,
Wang
,
F.
, and
Hu
,
Y.
,
2019
, “
First-Principles Investigations on the Contact Electrification Mechanism Between Metal and Amorphous Polymers for Triboelectric Nanogenerators
,”
Nano Energy
,
63
, p.
103864
.
10.
Fu
,
R.
,
Shen
,
X.
, and
Lacks
,
D. J.
,
2017
, “
First-Principles Study of the Charge Distributions in Water Confined Between Dissimilar Surfaces and Implications in Regard to Contact Electrification
,”
J. Phys. Chem. C
,
121
(
22
), pp.
12345
12349
.
11.
Kulbago
,
B. J.
, and
Chen
,
J.
,
2020
, “
Nonlinear Potential Field in Contact Electrification
,”
J. Electrostat.
,
108
, p.
103511
.
12.
Xu
,
C.
,
Zi
,
Y.
,
Wang
,
A. C.
,
Zou
,
H.
,
Dai
,
Y.
,
He
,
X.
,
Wang
,
P.
, et al
,
2018
, “
On the Electron-Transfer Mechanism in the Contact-Electrification Effect
,”
Adv. Mater.
,
30
(
15
), p.
1706790
.
13.
Tan
,
D.
,
Willatzen
,
M.
, and
Wang
,
Z. L.
,
2021
, “
Electron Transfer in the Contact-Electrification Between Corrugated 2D Materials: A First-Principles Study
,”
Nano Energy
,
79
, p.
105386
.
14.
Clark
,
E. S.
, and
Muus
,
L. T.
,
1962
, “
Partial Disordering and Crystal Transitions in Polytetrafluoroethylene
,”
Z. Kristallogr.
,
117
(
2–3
), pp.
119
127
.
15.
D’Ilario
,
L.
, and
Giglio
,
E.
,
1974
, “
Calculation of the van der Waals Potential Energy and Polytetrafluoroethylene as Two-Atom and Three-Atom Chains: Rotational Freedom in the Crystals
,”
Acta Cryst.
,
30
(
2
), pp.
372
378
.
16.
Weeks
,
J. J.
,
Clark
,
E. S.
, and
Eby
,
R. K.
,
1981
, “
Crystal Structure of the Low Temperature Phase (II) of Polytetrafluoroethylene
,”
Polymer
,
22
(
11
), pp.
1480
1486
.
17.
Scandolo
,
S.
,
Giannozzi
,
P.
,
Cavazzoni
,
C.
,
de Gironcoli
,
S.
,
Pasquarello
,
A.
, and
Baroni
,
S.
,
2005
, “
First-Principles Codes for Computational Crystallography in the Quantum-ESPRESSO Package
,”
Z. Kristallogr.
,
220
(
5–6
), pp.
574
579
.
18.
Xiang
,
Y.
,
Jiang
,
M.
,
Xiao
,
H.
,
Xing
,
K.
,
Peng
,
X.
,
Zhang
,
S.
, and
Qi
,
D.
,
2019
, “
A DFT Study of the Surface Charge Transfer Doping of Diamond by Chromium Trioxide
,”
Appl. Surf. Sci.
,
496
, p.
143604
.
19.
Bonnet
,
N.
,
Morishita
,
T.
,
Sugino
,
O.
, and
Otani
,
M.
,
2012
, “
First-Principles Molecular Dynamics at a Constant Electrode Potential
,”
Phys. Rev. Lett.
,
109
(
26
), p.
266101
.
20.
Giubileo
,
F.
,
Bartolomeo
,
A. D.
,
Lemmo
,
L.
,
Luongo
,
G.
, and
Urban
,
F.
,
2018
, “
Field Emission From Carbon Nanostructures
,”
Appl. Sci.
,
8
(
4
), p.
526
.
21.
Tan
,
D.
,
Xiang
,
Y.
,
Leng
,
Y.
, and
Leng
,
Y.
,
2018
, “
On the Metal/ZnO Contacts in a Sliding-Bending Piezoelectric Nanogenerator
,”
Nano Energy
,
50
, pp.
291
297
.
22.
Yu
,
M.
, and
Trinkle
,
D. R. J.
,
2011
, “
Accurate and Efficient Algorithm for Bader Charge Integration
,”
Chem. Phys.
,
134
(
6
), p.
064111
.
23.
Wong
,
C. P. Y.
,
Troadec
,
C.
,
Wee
,
A. T. S.
, and
Goh
,
K. E. J.
,
2020
, “
Gaussian Thermionic Emission Model for Analysis of Au/MoS2 Schottky-Barrier Devices
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054027
.
24.
Xu
,
C.
,
Wang
,
A. C.
,
Zou
,
H.
,
Zhang
,
B.
,
Zhang
,
C.
,
Zi
,
Y.
,
Pan
,
L.
, et al
,
2018
, “
Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification
,”
Adv. Mater.
,
30
(
38
), p.
1803968
.
25.
Wu
,
J.
,
Wang
,
X.
,
Li
,
H.
,
Wang
,
F.
,
Yang
,
W.
, and
Hu
,
Y.
,
2018
, “
Insights Into the Mechanism of Metal-Polymer Contact Electrification for Triboelectric Nanogenerator via First-Principles Investigations
,”
Nano Energy
,
48
, pp.
607
616
.
26.
Wang
,
M. J.
,
Shen
,
B.
,
Wang
,
Y.
,
Huang
,
S.
,
Xu
,
F. J.
,
Xu
,
J.
,
Qin
,
Z. X.
,
Yang
,
Z. J.
, and
Zhang
,
G. Y.
,
2007
, “
Tunneling Induced Electron Transfer in SiNx/AlGaN/GaN Based Metal–Insulator–Semiconductor Structures
,”
Appl. Phys. Lett.
,
371
(
3
), pp.
249
253
.
You do not currently have access to this content.