Abstract

In this paper, wall thermal energy loss in a cylindrical solar pond is studied using one-dimensional (1D) and two-dimensional (2D) transient models. It is seen that for a given quantity of insulation applied around the pond wall, the negative effect of sidewall loss reduces as the pond size increases. Further, the optimal insulation thickness that eradicates all wall energy loss is larger when calculated from a spatially 1D model, as opposed to when radial temperature gradients are given consideration. The 2D model reveals a larger entropy generation than that calculated by a 1D model for an imperfectly insulated pond. So, for such ponds, the present model would calculate entropy generation in a more realistic manner. It is revealed that using simpler 1D in space models to estimate solar pond’s outer wall optimum insulation thickness will not lead to any problems as far as the thermal performance is the concern. But, since such models over predict the optimum value, they would invoke more cost. So, when financial and space constraints are present, then it is advisable to design the wall insulation in solar ponds using spatially multi-dimensional heat transfer models, for which the present work could prove to be useful.

References

1.
Sodha
,
M. S.
,
Tiwari
,
G. N.
, and
Nayak
,
J. K.
,
1981
, “
Shallow Solar Pond Water Heater: An Analytical Study
,”
Energy Convers. Manage.
,
21
(
2
), pp.
137
139
.
2.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041201
.
3.
Kumar
,
A.
,
Verma
,
S.
, and
Das
,
R.
,
2020
, “
Eigenfunctions and Genetic Algorithm Based Improved Strategies for Performance Analysis and Geometric Optimization of a Two-Zone Solar Pond
,”
Sol. Energy
,
211
, pp.
949
961
.
4.
Yakubu
,
M.
,
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Al-Qahtani
,
M.
,
2021
, “
Influence of Working Fluid on a Novel Solar Pond Coil
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042105
.
5.
Wang
,
Y. F.
, and
Akbarzadeh
,
A.
,
1982
, “
A Study on the Transient Behaviour of Solar Ponds
,”
Energy
,
7
(
12
), pp.
1005
1017
.
6.
Date
,
A.
,
Yaakob
,
Y.
,
Date
,
A.
,
Krishnapillai
,
S.
, and
Akbarzadeh
,
A.
,
2013
, “
Heat Extraction From Non-convective and Lower Convective Zones of the Solar Pond: A Transient Study
,”
Sol. Energy
,
97
, pp.
517
528
.
7.
Appadurai
,
M.
, and
Velmurugan
,
V.
,
2015
, “
Performance Analysis of Fin Type Solar Still Integrated With Fin Type Mini Solar Pond
,”
Sustainable Energy Technol. Assess.
,
9
, pp.
30
36
.
8.
Verma
,
S.
, and
Das
,
R.
,
2021
, “
Transient Study of a Solar Pond Under Heat Extraction From Non-convective and Lower Convective Zones Considering Finite Effectiveness of Exchangers
,”
Sol. Energy
,
223
, pp.
437
448
.
9.
Wilkins
,
E.
,
1991
, “
Operation of a Commercial Solar Gel Pond
,”
Sol. Energy
,
46
(
6
), pp.
383
388
.
10.
Sozhan
,
N.
,
Senthilvelan
,
T.
,
Kaliyappan
,
T.
, and
Rapaka
,
E. V.
,
2013
, “
Experimental Investigation on a 0.25m2 Solar Gel Pond
,”
Int. J. Innov. Res. Sci. Eng. Technol.
,
2
(
8
), pp.
3384
3397
.
11.
Sayer
,
A. H.
,
Al-Hussaini
,
H.
, and
Campbell
,
A. N.
,
2018
, “
New Comprehensive Investigation on the Feasibility of the Gel Solar Pond, and a Comparison With the Salinity Gradient Solar Pond
,”
Appl. Therm. Eng.
,
130
, pp.
672
683
.
12.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Concept of Triple Heat Exchanger-Assisted Solar Pond Through an Improved Analytical Model
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051003
.
13.
Verma
,
S.
, and
Das
,
R.
,
2020
, “
Revisiting Gradient Layer Heat Extraction in Solar Ponds Through a Realistic Approach
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041009
.
14.
Verma
,
S.
, and
Das
,
R.
,
2020
, “
Effect of Ground Heat Extraction on Stability and Thermal Performance of Solar Ponds Considering Imperfect Heat Transfer
,”
Sol. Energy
,
198
, pp.
596
604
.
15.
Mansour
,
R. B.
,
Nguyen
,
C. T.
, and
Galanis
,
N.
,
2006
, “
Transient Heat and Mass Transfer and Long-Term Stability of a Salt-Gradient Solar Pond
,”
Mech. Res. Commun.
,
33
(
2
), pp.
233
249
.
16.
Angeli
,
C.
,
Leonardi
,
E.
, and
Maciocco
,
L.
,
2006
, “
A Computational Study of Salt Diffusion and Heat Extraction in Solar Pond Plants
,”
Sol. Energy
,
80
(
11
), pp.
1498
1508
.
17.
Giestas
,
M. C.
,
Pina
,
H. L.
,
Milhazes
,
J. P.
, and
Tavares
,
C.
,
2009
, “
Solar Pond Modeling With Density and Viscosity Dependent on Temperature and Salinity
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2849
2857
.
18.
Mazidi
,
M.
,
Shojaeefard
,
M. H.
,
Mazidi
,
M. S.
, and
Shojaeefard
,
H.
,
2011
, “
Two-Dimensional Modeling of a Salt-Gradient Solar Pond With Wall Shading Effect and Thermo-Physical Properties Dependent on Temperature and Concentration
,”
J. Therm. Sci.
,
20
(
4
), pp.
362
370
.
19.
El-Mansouri
,
A.
,
Hasnaoui
,
M.
,
Bennacer
,
R.
, and
Amahmid
,
A.
,
2017
, “
Transient Thermal Performances of a Salt Gradient Solar Pond Under Semi-Arid Moroccan Climate Using a 2D Double-Diffusive Convection Model
,”
Energy Convers. Manage.
,
151
, pp.
199
208
.
20.
Derakhshan
,
S.
,
Mirazimzadeh
,
S. E.
, and
Pazireh
,
S.
,
2018
, “
Study of Buoyancy-Driven Flow Effect on Salt Gradient Solar Ponds Performance
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101203
.
21.
Sogukpinar
,
H.
,
2020
, “
Numerical Study for Estimation of Temperature Distribution in Solar Pond in Diverse Climatic Conditions for all Cities of Turkey
,”
Environ. Prog. Sustainable Energy
,
39
(
1
), p.
13255
.
22.
Wang
,
H.
,
Xiaomeng
,
M.
,
Liugang
,
Z.
,
Zhang
,
X.
,
Mei
,
Y.
, and
Zhang
,
A.
,
2021
, “
Numerical and Experimental Study of Effect of Paraffin Phase Change Heat Storage Capsules on the Thermal Performance of the Solar Pond
,”
Energy Explor. Exploit.
,
39
(
3
), pp.
1010
1023
.
23.
Hull
,
J. R.
,
Liu
,
K. V.
,
Sha
,
W. T.
,
Kamal
,
J.
, and
Nielsen
,
C. E.
,
1984
, “
Dependence of Ground Heat Loss Upon Solar Pond Size and Perimeter Insulation Calculated and Experimental Results
,”
Sol. Energy
,
33
(
1
), pp.
25
33
.
24.
Beniwal
,
R. S.
,
Singh
,
R. V.
, and
Chaudhary
,
D. R.
,
1985
, “
Heat Losses From a Salt Gradient Solar Pond
,”
Appl. Energy
,
19
(
4
), pp.
273
285
.
25.
Karakilcik
,
M.
,
Kiymaç
,
K.
, and
Dincer
,
I.
,
2006
, “
Experimental and Theoretical Temperature Distributions in a Solar Pond
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
825
835
.
26.
Bozkurt
,
I.
,
Sogukpinar
,
H.
, and
Karakilcik
,
M.
,
2015
, “
Modelling of a Solar Pond for Different Insulation Materials to Calculate Temperature Distribution
,”
J. Multidiscip. Eng. Sci. Technol.
,
2
(
6
), pp.
1378
1382
.
27.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Wall Profile Optimisation of a Salt Gradient Solar Pond Using a Generalized Model
,”
Sol. Energy
,
184
, pp.
356
371
.
28.
Kumar
,
A.
, and
Das
,
R.
,
2021
, “
Effect of Peripheral Heat Conduction in Salt Gradient Solar Ponds
,”
J. Energy Storage
,
33
, p.
102084
.
29.
Goswami
,
R.
, and
Das
,
R.
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121302
.
30.
Dhindsa
,
G. S.
, and
Mittal
,
M. K.
, “
An Investigation of Double-Glass-Covered Trapezoidal Salt-Gradient Solar Pond Coupled With Reflector
,”
Int. J. Green Energy
,
15
(
2
), pp.
57
68
.
31.
Bryant
,
H. C.
, and
Colbeck
,
I.
,
1977
, “
A Solar Pond for London?
,”
Sol. Energy
,
19
(
3
), pp.
321
322
.
32.
Chakrabarty
,
S. G.
,
Wankhede
,
U. S.
,
Shelke
,
R. S.
, and
Gohil
,
T. B.
,
2020
, “
Investigation of Temperature Development in Salinity Gradient Solar Pond Using a Transient Model of Heat Transfer
,”
Sol. Energy
,
202
, pp.
32
44
.
33.
Andrews
,
J.
, and
Akbarzadeh
,
A.
,
2005
, “
Enhancing the Thermal Efficiency of Solar Ponds by Extracting Heat From the Gradient Layer
,”
Sol. Energy
,
78
(
6
), pp.
704
716
.
34.
Dah
,
M. M. O.
,
Ouni
,
M.
,
Guizani
,
A.
, and
Belghith
,
A.
,
2005
, “
Study of Temperature and Salinity Profiles Development of Solar Pond in Laboratory
,”
Desalination
,
183
(
1–3
), pp.
179
185
.
35.
Ozel
,
G.
,
Acikkalp
,
E.
,
Gorgun
,
B.
,
Yamik
,
H.
, and
Caner
,
N.
,
2015
, “
Optimum Insulation Thickness Determination Using the Environmental and Life Cycle Cost Analyses Based Entransy Approach
,”
Sustainable Energy Technol. Assess.
,
11
, pp.
87
91
.
You do not currently have access to this content.