Abstract

In the present work, hydrogen enrichment in biogas is studied as a potential approach to improve the performance and emission features of a biodiesel-biogas dual fuel engine. A single-cylinder diesel engine is modified to operate in dual fuel mode using Jatropha curcas biodiesel as the pilot fuel and biogas as the main fuel. An electronic control unit is developed in-house to study 5−20% hydrogen enrichment in biogas using the timed manifold injection (TMI) technique. A three-dimensional computational fluid dynamics-based simulation methodology is presented for optimal selection of TMI parameters to ensure efficient and safe operation of the engine. Subsequently, the optimized injection conditions are used for the experimental evaluations, which are performed for performance and emission characteristics of the engine at low and high engine loads. Engine performance is analyzed based on energy and exergy analyses, whereas hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and smoke emissions are analyzed for emission characterization. The simulation results show that the injection angle and injection pressure influence in-cylinder mixture formation and hydrogen accumulation in the intake manifold. A combination of injection angle = 60 deg and injection pressure = 150 kPa offers good mixture formation. Experimental results show that at 20% hydrogen enrichment, exergy efficiencies of the dual fuel engine are increased from 8.4% to 10.1% at low load and 23.3% to 25.5% at high load. However, maximum reductions in HC and CO emissions of 35.6% and 50.0%, respectively, are calculated at low load.

References

1.
International Energy Outlook 2019
. “
International Energy Outlook 2019, with projections to 2050
”, September
2019
, https://www.eia.gov/ieo.
2.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
, and
Lu
,
Y.
,
2020
, “
Recent Studies of Fuels Used in Wankel Rotary Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
030801
. 10.1115/1.4047971
3.
Bartolucci
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2021
, “
A Computational Investigation of the Impact of Multiple Injection Strategies on Combustion Efficiency in Diesel–Natural Gas Dual-Fuel Low-Temperature Combustion Engines
,”
ASME. J. Energy Resour. Technol.
,
143
(
2
), p.
022305
. 10.1115/1.4047887
4.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
5.
Tagliaferri
,
C.
,
Evangelisti
,
S.
,
Acconcia
,
F.
,
Domenech
,
T.
,
Ekins
,
P.
,
Barletta
,
D.
, and
Lettieri
,
P.
,
2016
, “
Life Cycle Assessment of Future Electric and Hybrid Vehicles: A Cradle-to-Grave Systems Engineering Approach
,”
Chem. Eng. Res. Des.
,
112
, pp.
298
309
. 10.1016/j.cherd.2016.07.003
6.
Mittal
,
S.
,
Ahlgren
,
E. O.
, and
Shukla
,
P. R.
,
2018
, “
Barriers to Biogas Dissemination in India: A Review
,”
Energy Policy
,
112
, pp.
361
370
. 10.1016/j.enpol.2017.10.027
7.
Mittal
,
S.
,
Ahlgren
,
E. O.
, and
Shukla
,
P. R.
,
2019
, “
Future Biogas Resource Potential in India: A Bottom-up Analysis
,”
Renewable Energy
,
141
, pp.
379
389
. 10.1016/j.renene.2019.03.133
8.
Åhman
,
M.
,
2010
, “
Biomethane in the Transport Sector—An Appraisal of the Forgotten Option
,”
Energy Policy
,
38
(
1
), pp.
208
217
. 10.1016/j.enpol.2009.09.007
9.
Prussi
,
M.
,
Padella
,
M.
,
Conton
,
M.
,
Postma
,
E. D.
, and
Lonza
,
L.
,
2019
, “
Review of Technologies for Biomethane Production and Assessment of Eu Transport Share in 2030
,”
J. Cleaner Prod.
,
222
, pp.
565
572
. 10.1016/j.jclepro.2019.02.271
10.
Moirangthem
,
K.
, and
Baxter
,
D.
,
2016
,
Alternative Fuels for Marine and Inland Waterways
,
European Commission
,
The Netherlands
.
11.
Biogas Power Generation and Thermal Application Programme (BPGTP)
. [Online]. Available: https://mnre.gov.in/Bio%20Energy/policy-and-guidelines
12.
Verma
,
S.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2017
, “
Effects of Varying Composition of Biogas on Performance and Emission Characteristics of Compression Ignition Engine Using Exergy Analysis
,”
Energy Convers. Manage.
,
138
, pp.
346
359
. 10.1016/j.enconman.2017.01.066
13.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2018
, “
Potential and Limitations of dual fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
. 10.1115/1.4038464
14.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2014
, “
Cyclic Combustion Variations in dual fuel Partially Premixed Pilot-Ignited Natural gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 012003. 10.1115/1.4024855
15.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Turbocharged Direct Injection dual fuel Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032202
. 10.1115/1.4023482
16.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-like Efficiency Using Compressed Natural gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
17.
Verma
,
S.
,
Kaushik
,
S. C.
,
Das
,
L. M.
, and
Bhatti
,
S. S.
,
2018
, “
An Experimental Investigation of Biodiesel-Biogas Dual-Fuel Engine Based on Energy and Exergy Analysis
,”
Int. J. Exergy
,
26
(
1–2
), pp.
58
76
. 10.1504/IJEX.2018.092505
18.
Ryu
,
K.
,
2013
, “
Effects of Pilot Injection Timing on the Combustion and Emissions Characteristics in a Diesel Engine Using Biodiesel–CNG dual fuel
,”
Appl. Energy
,
111
, pp.
721
730
. 10.1016/j.apenergy.2013.05.046
19.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2016
, “
Experimental Evaluation of a Rice Bran Biodiesel–Biogas run dual fuel Diesel Engine at Varying Compression Ratios
,”
Renewable Energy
,
87
, pp.
782
790
. 10.1016/j.renene.2015.11.002
20.
Karthic
,
S. V.
,
Senthil Kumar
,
M.
,
Nataraj
,
G.
, and
Pradeep
,
P.
,
2019
, “
Experimental Investigations on the Influence of Hydrogen and LPG Mixtures on Performance Behavior of a Mahua bio oil-Powered dual fuel Engine
,”
Int. J. Green Energy
,
16
(
12
), pp.
878
889
. 10.1080/15435075.2019.1641713
21.
Li
,
Y.
,
Jia
,
M.
,
Chang
,
Y.
,
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2016
, “
Thermodynamic Energy and Exergy Analysis of Three Different Engine Combustion Regimes
,”
Appl. Energy
,
180
, pp.
849
858
. 10.1016/j.apenergy.2016.08.038
22.
Razmara
,
M.
,
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Robinett
R. D.
, III
,
2016
, “
Optimal Exergy-Based Control of Internal Combustion Engines
,”
Appl. Energy
,
183
, pp.
1389
1403
. 10.1016/j.apenergy.2016.09.058
23.
Krishnamoorthi
,
M.
,
Sreedhara
,
S.
, and
Duvvuri
,
P. P.
,
2020
, “
Experimental, Numerical and Exergy Analyses of a dual fuel Combustion Engine Fuelled with Syngas and Biodiesel/Diesel Blends
,”
Appl. Energy
,
263
, p.
114643
. 10.1016/j.apenergy.2020.114643
24.
Sahoo
,
B. B.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2011
, “
Theoretical Performance Limits of a Syngas–Diesel Fueled Compression Ignition Engine From Second law Analysis
,”
Energy
,
36
(
2
), pp.
760
769
. 10.1016/j.energy.2010.12.045
25.
Rakopoulos
,
C. D.
,
Scott
,
M. A.
,
Kyritsis
,
D. C.
, and
Giakoumis
,
E. G.
,
2008
, “
Availability Analysis of Hydrogen/Natural gas Blends Combustion in Internal Combustion Engines
,”
Energy
,
33
(
2
), pp.
248
255
. 10.1016/j.energy.2007.05.009
26.
Das
,
L. M.
,
2002
, “
Hydrogen Engine: Research and Development (R&D) Programmes in Indian Institute of Technology (IIT), Delhi
,”
Int. J. Hydrogen Energy
,
27
(
9
), pp.
953
965
. 10.1016/S0360-3199(01)00178-1
27.
Saravanan
,
N.
,
Nagarajan
,
G.
,
Dhanasekaran
,
C.
, and
Kalaiselvan
,
K. M.
,
2007
, “
Experimental Investigation of Hydrogen Port Fuel Injection in DI Diesel Engine
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
4071
4080
. 10.1016/j.ijhydene.2007.03.036
28.
Chintala
,
V.
, and
Subramanian
,
K. A.
,
2015
, “
An Effort to Enhance Hydrogen Energy Share in a Compression Ignition Engine Under Dual-Fuel Mode Using low Temperature Combustion Strategies
,”
Appl. Energy
,
146
, pp.
174
183
. 10.1016/j.apenergy.2015.01.110
29.
Lakshmanan
,
T.
, and
Nagarajan
,
G.
,
2010
, “
Experimental Investigation of Timed Manifold Injection of Acetylene in Direct Injection Diesel Engine in dual fuel Mode
,”
Energy
,
35
(
8
), pp.
3172
3178
. 10.1016/j.energy.2010.03.055
30.
Verma
,
S.
,
Das
,
L. M.
,
Bhatti
,
S. S.
, and
Kaushik
,
S. C.
,
2017
, “
A Comparative Exergetic Performance and Emission Analysis of Pilot Diesel Dual-Fuel Engine with Biogas, CNG and Hydrogen as Main Fuels
,”
Energy Convers. Manage.
,
151
, pp.
764
777
. 10.1016/j.enconman.2017.09.035
31.
Chintala
,
V.
, and
Subramanian
,
K. A.
,
2013
, “
A CFD (Computational Fluid Dynamics) Study for Optimization of gas Injector Orientation for Performance Improvement of a Dual-Fuel Diesel Engine
,”
Energy
,
57
, pp.
709
721
. 10.1016/j.energy.2013.06.009
32.
Jemni
,
M. A.
,
Kassem
,
S. H.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2018
, “
Effects of Hydrogen Enrichment and Injection Location on in-Cylinder Flow Characteristics, Performance and Emissions of Gaseous LPG Engine
,”
Energy
,
150
, pp.
92
108
. 10.1016/j.energy.2018.02.120
33.
Niu
,
R.
,
Yu
,
X.
,
Du
,
Y.
,
Xie
,
H.
,
Wu
,
H.
, and
Sun
,
Y.
,
2016
, “
Effect of Hydrogen Proportion on Lean Burn Performance of a dual fuel SI Engine Using Hydrogen Direct-Injection
,”
Fuel
,
186
, pp.
792
799
. 10.1016/j.fuel.2016.09.021
34.
Boretti
,
A.
,
2011
, “
Advantages of the Direct Injection of Both Diesel and Hydrogen in dual fuel H2ICE
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
9312
9317
. 10.1016/j.ijhydene.2011.05.037
35.
Sandalcı
,
T.
, and
Karagöz
,
Y.
,
2014
, “
Experimental Investigation of the Combustion Characteristics, Emissions and Performance of Hydrogen Port Fuel Injection in a Diesel Engine
,”
Int. J. Hydrogen Energy
,
39
(
32
), pp.
18480
18489
. 10.1016/j.ijhydene.2014.09.044
36.
Wu
,
H. W.
, and
Wu
,
Z. Y.
,
2012
, “
Combustion Characteristics and Optimal Factors Determination with Taguchi Method for Diesel Engines Port-Injecting Hydrogen
,”
Energy
,
47
(
1
), pp.
411
420
. 10.1016/j.energy.2012.09.027
37.
Wang
,
L.
,
Yang
,
Z.
,
Huang
,
Y.
,
Liu
,
D.
,
Duan
,
J.
,
Guo
,
S.
, and
Qin
,
Z.
,
2017
, “
The Effect of Hydrogen Injection Parameters on the Quality of Hydrogen–Air Mixture Formation for a PFI Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
42
(
37
), pp.
23832
23845
. 10.1016/j.ijhydene.2017.04.086
38.
Cheng
,
X.
,
Baigang
,
S.
, and
Zhen
,
H.
,
2017
, “
Investigation on Jet Characteristics of Hydrogen Injection and Injection Strategy for Backfire Control in a Port Fuel Injection Hydrogen Engine
,”
Energy Procedia
,
105
, pp.
1588
1599
. 10.1016/j.egypro.2017.03.508
39.
Mortazavi
,
H.
,
Wang
,
Y.
,
Ma
,
Z.
, and
Zhang
,
Y.
,
2018
, “
The Investigation of CO2 Effect on the Characteristics of a Methane Diffusion Flame
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
97
102
. 10.1016/j.expthermflusci.2017.11.005
40.
Schröder
,
V.
,
Schalau
,
B.
, and
Molnarne
,
M.
,
2014
, “
Explosion Protection in Biogas and Hybrid Power Plants
,”
Procedia Eng.
,
84
, pp.
259
272
. 10.1016/j.proeng.2014.10.433
41.
Verma
,
S.
, and
Das
,
L. M.
,
2018
, “
Spark Advance Modeling of Hydrogen-Fueled Spark Ignition Engines Using Combustion Descriptors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081501
. 10.1115/1.4038798
42.
Alkidas
,
A. C.
,
1988
, “
The Application of Availability and Energy Balances to a Diesel Engine
,”
J. Eng. Gas Turbines Power
,
110
(
3
), pp.
462
469
. 10.1115/1.3240143
43.
Parlak
,
A.
,
Yasar
,
H.
, and
Eldogan
,
O.
,
2005
, “
The Effect of Thermal Barrier Coating on a Turbo-Charged Diesel Engine Performance and Exergy Potential of the Exhaust gas
,”
Energy Convers. Manage.
,
46
(
3
), pp.
489
499
. 10.1016/j.enconman.2004.03.006
44.
Hatami
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2014
, “
A Review of Different Heat Exchangers Designs for Increasing the Diesel Exhaust Waste Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
168
181
. 10.1016/j.rser.2014.05.004
45.
Park
,
J.
,
Hwang
,
D. J.
,
Choi
,
J. G.
,
Lee
,
K. M.
,
Keel
,
S. I.
, and
Shim
,
S. H.
,
2003
, “
Chemical Effects of CO2 Addition to Oxidizer and Fuel Streams on Flame Structure in H2–O2 Counterflow Diffusion Flames
,”
Int. J. Energy Res.
,
27
(
13
), pp.
1205
1220
. 10.1002/er.946
You do not currently have access to this content.