Abstract

This study aims to analyze the effect of piston bowl geometry on the combustion and emission performance of the syngas-fueled homogenous charge compression ignition (HCCI) engine, which operates under lean air–fuel mixture conditions for power plant usage. Three different piston bowl geometries were used with a reduction of piston bowl depth and squish area ratio of the baseline piston bowl with the same compression ratio of 17.1. Additionally, exhaust gas recirculation (EGR) is used to control the maximum pressure rise rate (MPRR) of syngas-fueled HCCI engines. To simulate the combustion process at medium load (5 bar indicated mean effective pressure (IMEP)) and high loads of (8 and 10 bar IMEP), ansys forte cfd package was used, and the calculated results were compared with Aceves et al.’s Multi-zone HCCI model, using the same chemical kinetics set (Gri-Mech 3.0). All calculations were accomplished at maximum brake torque (MBT) conditions, by sweeping the air–fuel mixture temperature at the inlet valve close (TIVC). This study reveals that the TIVC of the air–fuel mixture and the heat loss rate through the wall are the main factors that influence combustion phasing by changing the piston bowl geometry. It also finds that although pistons B and C give high thermal efficiency, they cannot be used for the combustion process, due to the very high MPRR and NOx emissions. Even though the baseline piston shows high MPRR (23 bar/degree), it is reduced, and reveals an acceptable range of 10–12 bar/degree, using 30% EGR.

References

References
1.
Nobakht
,
A. Y.
,
Saray
,
R. K.
, and
Rahimi
,
A.
,
2011
, “
A Parametric Study on Natural Gas Fueled HCCI Combustion Engine Using a Multi-Zone Combustion Model
,”
Fuel.
,
90
(
4
), pp.
1508
1514
. 10.1016/j.fuel.2010.12.026
2.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
July 17, 2019
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME. J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
3.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
4.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2019
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohol Fuelled Gasoline Direct Injection Engine
,”
ASME. J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
5.
Kurniawan
,
W. H.
,
Abdullah
,
S.
, and
Shamsudeen
,
A.
,
2007
, “
Turbulence and Heat Transfer Analysis of Intake and Compression Stroke in Automotive 4-Stroke Direct Injection Engine
,”
Algerian J. Appl. Fluid Mech.
,
1
, pp.
37
50
.
6.
Abdul Gafoor
,
C. P.
, and
Gupta
,
R.
,
2015
, “
Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission From Diesel Engines
,”
Energy Convers. Manage.
,
101
, pp.
541
551
. 10.1016/j.enconman.2015.06.007
7.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME. J. Energy Resour. Technol.
,
137
(
3
), p.
032212
. 10.1115/1.4029963
8.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME. J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
9.
Hessel
,
R.
,
Aceves
,
S.
, and
Flowers
,
D.
,
2006
, “
A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution from IVC to SOC: A Numerical and Fundamental Study
,”
SAE Paper No. 2006-01-0869
.
10.
Aljaberi
,
H. A.
,
Aljaberi
,
A.
, and
Abdul Aziz
,
N.
,
2017
, “
The Use of Different Types of Piston in an HCCI Engine: A Review
,”
Int. J. Automot.
,
14
(
2
), pp.
4348
4368
. 10.15282/ijame.14.2.2017.17.0346
11.
Karthikeya Sharma
,
T.
,
Amba Prasad Rao
,
G.
, and
Madhu Murthy
,
K.
,
2015
, “
Influence of Piston Bowl Shape on Flow and Combustion Characteristics in HCCI Engine: A CFD Study
,”
International Conference on New Frontiers in Chemical, Energy and Environmental Engineering INCEEE
,
NIT Warangal, India
,
Mar. 21
.
12.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Martinez-Frias
,
J.
,
Espinosa-Loza
,
F.
,
Christensen
,
M.
,
Johansson
,
B.
, and
Hessel
,
R. P.
,
2005
, “
Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling
,”
SAE Paper
. 10.4271/2005-01-2134
13.
Mohammed Ali
,
A. A. M.
,
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2019
, “
Numerical Study of the Combustion Characteristics in a Syngas-Diesel Dual-Fuel Engine Under Lean Condition
,”
Int. J. Automot. Technol.
,
20
(
5
), pp.
933
942
. 10.1007/s12239-019-0087-7
14.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Investigate the Effect of Syngas Composition and Compression Ratio on the Combustion and Emission Characteristics of a Syngas-Fueled HCCI Engine
,”
ASME. J. Energy Resour. Technol.
,
142
(
9
), p.
092301
. 10.1115/1.4046729
15.
Ladommatos
,
N.
,
Abdelhalim
,
S. M.
,
Zhao
,
H.
, and
Hu
,
Z.
,
1997
, “
The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions–Part 4: Effects of Carbon Dioxide and Water Vapour
,”
SAE Trans.
, pp.
1844
1862
. 10.4271/971660
16.
Lee
,
K.
, and
Min
,
K.
,
2009
, “
Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-Zone Method and Reduced Kinetic Mechanism
,”
SAE Paper No. 2009
.
17.
Fathi
,
M.
,
Khoshbakhti Saray
,
R.
, and
David Checkel
,
M.
,
2011
, “
The Influence of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of n-Heptane/Natural gas Fueled Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Appl. Energy
,
88
(
0
), pp.
4719
4724
. 10.1016/j.apenergy.2011.06.017
18.
Chen
,
G.
,
Iida
,
N.
, and
Huang
,
Z.
,
2010
, “
Numerical Study of EGR Effects on Reducing the Pressure Rise Rate of HCCI Engine Combustion
,”
Front. Energy Power Eng. China
,
4
(
3
), pp.
376
385
. 10.1007/s11708-010-0118-6
19.
Dec
,
J.
,
2002
, “
A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines
,”
SAE Paper No. 2002-01-1309
.
20.
Splitter
,
D.
,
Wissink
,
M.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2012
, “
Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency
,”
SAE Paper No. 2012-01-0383
.
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
22.
Hanson
,
R.
,
Curran
,
S.
,
Wagner
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2012
, “
Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine
,”
SAE Int. J. Engines.
,
5
(
2
), pp.
286
299
. 10.4271/2012-01-0380
23.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
,
Pitz
,
W.
,
Dibble
,
R.
,
Christensen
,
M.
, and
Johansson
,
B.
,
2000
, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,”
SAE Technical Paper 2000-01-0327
.
24.
R. ANSYS®ANSYS Forte
,
Help System, Forte Theory Manual
,
ANSYS, Inc
.
25.
Calam
,
A.
,
Solmaz
,
H.
,
Yılmaz
,
E.
, and
Içingür
,
Y.
,
2019
, “
Investigation of the Effect of Compression Ratio on Combustion and Exhaust Emissions in an HCCI Engine
,”
Energy
,
168
, pp.
1208
1216
. 10.1016/j.energy.2018.12.023
26.
Yamasaki
,
Y.
, and
Kaneko
,
S.
,
2014
, “
Prediction of Ignition and Combustion Development in an HCCI Engine Fueled by Syngas
,”
SAE Paper No. 2014-32-0002
.
27.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,”
SAE Paper No. 790840
. http://www.jstor.org/stable/44699092
28.
Contino
,
F.
,
Foucher
,
F.
,
Dagaut
,
P.
,
Lucchini
,
T.
,
D’Errico
,
G.
, and
Mounaïm-Rousselle
,
C.
,
2013
, “
Experimental and Numerical Analysis of Nitric Oxide Effect on the Ignition of Iso-Octane in a Single Cylinder HCCI Engine
,”
Combust. Flame
,
160
(
8
), pp.
1476
1483
. 10.1016/j.combustflame.2013.02.028
You do not currently have access to this content.