Abstract

In the present work, an experimental investigation on the effect of sulfur content in heavy fuel oil (HFO) on the gaseous emissions under swirling flame conditions was carried out. The sulfur content in HFO was varied by blending with ultra-low sulfur diesel and four fuel samples containing 3.15, 2.80, 1.97, and 0.52% sulfur (by mass) were prepared. Pure asphaltenes were added to the blends to ensure that the asphaltene content in the fuel remained the same. The fuels were then fired in a high-swirl stabilized, turbulent spray flame. The combustion performance of the fuels was evaluated by measuring flame temperature distribution, gaseous emissions (SOx, NOx, CO, CO2, and flue gas pH), and particulate matter (PM) emissions (morphology, composition, and pH). The results showed a significant reduction in the SO2 emissions and acidity of the flue gas when the sulfur content in the fuel was reduced, as expected. The reduction was more than would be expected based on sulfur content, however. For example, the flue gas SO2 concentration reduced from 620 ppm to 48 ppm when the sulfur content in the fuel was reduced from 3.15 to 0.52% (by mass). Sulfur balance calculations indicate that nearly 97.5% of the sulfur in the fuel translates into gaseous emissions and the remaining 2.5% appears in PM emissions. Ninety-five percent of the gaseous sulfur emissions are SO2, whereas the rest appears as SO3. Varying the sulfur content in the fuel did not have a major impact on the flame temperature distribution or NOx emissions. The morphologies and the size distribution of the PM also did not change significantly with the sulfur content as the asphaltenes content of the fuels remained the same.

References

1.
Abdul Jameel
,
A. G.
,
Elbaz
,
A. M.
,
Emwas
,
A.-H.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2016
, “
Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1 H and 13 C Nuclear Magnetic Resonance Spectroscopy
,”
Energy Fuels
,
30
(
5
), pp.
3894
3905
. 10.1021/acs.energyfuels.6b00303
2.
Elbaz
,
A. M.
,
Gani
,
A.
,
Hourani
,
N.
,
Emwas
,
A.-H.
,
Sarathy
,
S. M.
, and
Roberts
,
W. L.
,
2015
, “
TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil
,”
Energy Fuels
,
29
(
12
), pp.
7825
7835
. 10.1021/acs.energyfuels.5b01739
3.
Nielsen
,
K. E.
,
Dittmer
,
J.
,
Malmendal
,
A.
, and
Nielsen
,
N. C.
,
2008
, “
Quantitative Analysis of Constituents in Heavy Fuel Oil by 1 H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis
,”
Energy Fuels
,
22
(
6
), pp.
4070
4076
. 10.1021/ef800539g
4.
Abdul Jameel
,
A. G.
,
Khateeb
,
A.
,
Elbaz
,
A. M.
,
Emwas
,
A.-H.
,
Zhang
,
W.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2019
, “
Characterization of Deasphalted Heavy Fuel Oil Using APPI (+) FT-ICR Mass Spectrometry and NMR Spectroscopy
,”
Fuel
,
253
, pp.
950
963
. 10.1016/j.fuel.2019.05.061
5.
Garaniya
,
V.
,
McWilliam
,
D.
,
Goldsworthy
,
L.
, and
Ghiji
,
M.
,
2018
, “
Extensive Chemical Characterization of a Heavy Fuel Oil
,”
Fuel
,
227
(
April
), pp.
67
78
. 10.1016/j.fuel.2018.04.094
6.
Abdul Jameel
,
A. G.
, and
Sarathy
,
S. M.
,
2018
, “Lube Products: Molecular Characterization of Base Oils,”
Encyclopedia of Analytical Chemistry
,
John Wiley & Sons, Ltd
,
Chichester, UK
, pp.
1
14
.
7.
Cheng
,
L.-H.
,
Yeh
,
C.-F.
,
Tsai
,
K.-C.
,
Lee
,
P.-F.
,
Tseng
,
T.-P.
,
Huang
,
L.-J.
,
Yeh
,
S.-H.
,
Hsu
,
H.-T.
,
Lin
,
C.-H.
,
Lai
,
C.-H.
,
Brimblecombe
,
P.
, and
Chen
,
M.-J.
,
2019
, “
Effect of Pool Fire Scale of Heavy Fuel Oil on the Characteristics of PAH Emissions
,”
Fuel
,
235
, pp.
933
943
. 10.1016/j.fuel.2018.08.022
8.
Vaezi
,
M.
,
Passandideh-Fard
,
M.
,
Moghiman
,
M.
, and
Charmchi
,
M.
,
2011
, “
Gasification of Heavy Fuel Oils: A Thermochemical Equilibrium Approach
,”
Fuel
,
90
(
2
), pp.
878
885
. 10.1016/j.fuel.2010.10.011
9.
Abdul Jameel
,
A. G.
,
Han
,
Y.
,
Brignoli
,
O.
,
Telalović
,
S.
,
Elbaz
,
A. M.
,
Im
,
H. G.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2017
, “
Heavy Fuel Oil Pyrolysis and Combustion: Kinetics and Evolved Gases Investigated by TGA-FTIR
,”
J. Anal. Appl. Pyrolysis
,
127
(
August
), pp.
183
195
. 10.1016/j.jaap.2017.08.008
10.
Ma
,
H.
,
Zhou
,
L.
,
Lv
,
S.
,
Chew
,
J. W.
, and
Wang
,
Z.
,
2019
, “
Review on Reaction Mechanisms of Sulfur Species During Coal Combustion
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
100801
. 10.1115/1.4043554
11.
Borówka
,
G.
,
Bytnar
,
K.
,
Krzak
,
M.
,
Walendziewski
,
J.
, and
Zmuda
,
W. A.
,
2019
, “
Physicochemical Properties of Fuel Blends Composed of Heavy Fuel Oil and Tire-Derived Pyrolytic Oils
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), pp.
43
47
. 10.1115/1.4042826
12.
Zeng
,
X.
,
Tan
,
Q.
, and
Tan
,
Z.
,
2019
, “
Optimization of Combustion and Emission Characteristics of a Two-Stroke Marine Diesel Engine Based on Online Ultrasonic and Magnetization of Marine Heavy Fuel Oil
,”
Combust. Sci. Technol.
,
191
(
7
), pp.
1154
1167
. 10.1080/00102202.2018.1515830
13.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
. 10.1115/1.4027897
14.
Liang
,
L. H.
,
2018
,
What You Need to Know: The 2020 IMO Fuel Sulphur Regulation
, https://hydramotion.com/uploads/view/20200115150954_SOMWME-whitepaper_Sulphur-p2.pdf.
15.
Halff
,
A.
,
Younes
,
L.
, and
Boersma
,
T.
,
2019
, “
The Likely Implications of the New IMO Standards on the Shipping Industry
,”
Energy Policy
,
126
, pp.
277
286
. 10.1016/j.enpol.2018.11.033
16.
Zis
,
T.
, and
Psaraftis
,
H. N.
,
2017
, “
The Implications of the New Sulphur Limits on the European Ro-Ro Sector
,”
Transp. Res. Part D Transp. Environ.
,
52
, pp.
185
201
. 10.1016/j.trd.2017.03.010
17.
Campuzano
,
F.
,
Abdul Jameel
,
A. G.
,
Zhang
,
W.
,
Emwas
,
A.-H.
,
Agudelo
,
A. F.
,
Martínez
,
J. D.
, and
Sarathy
,
S. M.
,
2020
, “
Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived From a Continuous Twin-Auger Reactor
,”
Energ. Fuels
,
34
(
10
), p.
0c02271
. 10.1021/acs.energyfuels.0c02271
18.
Abdul Jameel
,
A. G.
,
Alkhateeb
,
A.
,
Telalović
,
S.
,
Elbaz
,
A. M.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2019
, “
Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion
,”
Proceedings of the Fourth International Conference in Ocean Engineering
,
Springer
, pp.
1047
1055
.
19.
Blatcher
,
D. J.
, and
Eames
,
I.
,
2013
, “
Compliance of Royal Naval Ships With Nitrogen Oxide Emissions Legislation
,”
Mar. Pollut. Bull.
,
74
(
1
), pp.
10
18
. 10.1016/j.marpolbul.2013.07.010
20.
Javadli
,
R.
, and
de Klerk
,
A.
,
2012
, “
Desulfurization of Heavy Oil
,”
Appl. Petrochemical Res.
,
1
(
1–4
), pp.
3
19
. 10.1007/s13203-012-0006-6
21.
Khateeb
,
A. A.
,
Elbaz
,
A. M.
,
Guida
,
P.
, and
Roberts
,
W. L.
,
2018
, “
Influence of Asphaltene Concentration on the Combustion of a Heavy Fuel Oil Droplet
,”
Energy Fuels
,
32
(
12
), pp.
12981
12991
. 10.1021/acs.energyfuels.8b03260
22.
Villasenor
,
R.
, and
Garcia
,
F.
,
1999
, “
An Experimental Study of the Effects of Asphaltenes on Heavy Fuel Oil Droplet Combustion
,”
Fuel
,
78
(
8
), pp.
933
944
. 10.1016/S0016-2361(99)00010-1
23.
Elbaz
,
A. M.
,
Khateeb
,
A. A.
, and
Roberts
,
W. L.
,
2018
, “
PM From the Combustion of Heavy Fuel Oils
,”
Energy
,
152
, pp.
455
465
. 10.1016/j.energy.2018.03.163
24.
Ikegami
,
M.
,
Xu
,
G.
,
Ikeda
,
K.
,
Honma
,
S.
,
Nagaishi
,
H.
,
Dietrich
,
D. L.
, and
Takeshita
,
Y.
,
2003
, “
Distinctive Combustion Stages of Single Heavy Oil Droplet Under Microgravity ☆
,”
Fuel
,
82
(
3
), pp.
293
304
. 10.1016/S0016-2361(02)00257-0
25.
Marrone
,
N. J.
,
Kennedy
,
I. M.
, and
Dryer
,
F. L.
,
1984
, “
Coke Formation in the Combustion of Isolated Heavy Oil Droplets
,”
Combust. Sci. Technol.
,
36
(
3–4
), pp.
149
170
. 10.1080/00102208408923731
26.
Jiang
,
L.
,
Elbaz
,
A. M.
,
Guida
,
P.
,
Al-Noman
,
S. M.
,
AlGhamdi
,
I. A.
,
Saxena
,
S.
, and
Roberts
,
W. L.
,
2019
, “
Cenosphere Formation During Single-Droplet Combustion of Heavy Fuel Oil
,”
Energy Fuels
,
33
(
2
), pp.
1570
1581
. 10.1021/acs.energyfuels.8b03632
27.
Urban
,
D. L.
, and
Dryer
,
F. L.
,
1991
, “
New Results on Coke Formation in the Combustion of Heavy-Fuel Droplets
,”
Symp. Combust.
,
23
(
1
), pp.
1437
1443
. 10.1016/S0082-0784(06)80411-X
28.
Moszkowicz
,
P.
,
Witzel
,
L.
, and
Claus
,
G.
,
1996
, “
Modelling of Very Fast Pyrolysis of Heavy Fuel Oil Droplets
,”
Chem. Eng. Sci.
,
51
(
17
), pp.
4075
4086
. 10.1016/0009-2509(96)00253-9
29.
Azimi
,
A.
,
Arabkhalaj
,
A.
,
Shahsavan Markadeh
,
R.
, and
Ghassemi
,
H.
,
2018
, “
Fully Transient Modeling of the Heavy Fuel Oil Droplets Evaporation
,”
Fuel
,
230
, pp.
52
63
. 10.1016/j.fuel.2018.05.007
30.
Fostiropoulos
,
S.
,
Strotos
,
G.
,
Nikolopoulos
,
N.
, and
Gavaises
,
M.
,
2020
, “
Numerical Investigation of Heavy Fuel Oil Droplet Breakup Enhancement With Water Emulsions
,”
Fuel
,
278
, p.
118381
. 10.1016/j.fuel.2020.118381
31.
Stamoudis
,
N.
,
Chryssakis
,
C.
, and
Kaiktsis
,
L.
,
2014
, “
A Two-Component Heavy Fuel Oil Evaporation Model for CFD Studies in Marine Diesel Engines
,”
Fuel
,
115
, pp.
145
153
. 10.1016/j.fuel.2013.06.035
32.
Garaniya
,
V.
, and
Goldsworthy
,
L.
,
2007
, “
Vaporization and Pyrolysis Modelling of a Single Droplet of Heavy Fuel Oil Using Continuous Thermodynamics
,”
ANZIAM J.
,
49
, p.
116
. 10.21914/anziamj.v49i0.369
33.
Garaniya
,
V.
, and
Goldsworthy
,
L.
,
2012
, “
Heavy Fuel Oil Combustion Modelling Using Continuous Thermodynamics
,”
Mar. Eng.
,
47
(
6
), pp.
871
877
. 10.5988/jime.47.871
34.
Ben-Manosur
,
R.
,
Ahmed
,
P.
, and
Habib
,
M. A.
,
2015
, “
Simulation of Oxy–Fuel Combustion of Heavy Oil Fuel in a Model Furnace
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032206
. 10.1115/1.4029007
35.
Stefanitsis
,
D.
,
Malgarinos
,
I.
,
Strotos
,
G.
,
Nikolopoulos
,
N.
,
Kakaras
,
E.
, and
Gavaises
,
M.
,
2017
, “
Numerical Investigation of the Aerodynamic Breakup of Diesel and Heavy Fuel Oil Droplets
,”
Int. J. Heat Fluid Flow
,
68
, pp.
203
215
. 10.1016/j.ijheatfluidflow.2017.10.012
36.
Costa
,
M.
,
Costen
,
P.
, and
Lockwood
,
F. C.
,
1991
, “
Combustion Measurements in a Heavy Fuel Oil-Fired Furnace
,”
Combust. Sci. Technol.
,
75
(
1–3
), pp.
129
154
. 10.1080/00102209108924083
37.
Costa
,
M.
,
Costen
,
P.
, and
Lockwood
,
F. C.
,
1991
, “
Detailed Measurements in a Heavy Fuel Oil-Fired Large-Scale Furnace
,”
Combust. Sci. Technol.
,
77
(
1–3
), pp.
1
26
. 10.1080/00102209108951717
38.
Byrnes
,
M. A.
,
Foumeny
,
E. A.
,
Mahmud
,
T.
,
Sharifah
,
A. S. A. K.
,
Abbas
,
T.
,
Costen
,
P. G.
,
Hassan
,
S.
, and
Lockwood
,
F. C.
,
1996
, “
Measurements and Predictions of Nitric Oxide and Particulates Emissions From Heavy Fuel Oil Spray Flames
,”
Symp. Combust
,
26
(
2
), pp.
2241
2250
. 10.1016/S0082-0784(96)80051-8
39.
Villasenor
,
R.
, and
Escalera
,
R.
,
1998
, “
A Highly Radiative Combustion Chamber for Heavy Fuel Oil Combustion
,”
Int. J. Heat Mass Transf.
,
41
(
20
), pp.
3087
3097
. 10.1016/S0017-9310(98)00025-8
40.
Liu
,
H.
,
He
,
K.
,
He
,
D.
,
Fu
,
L.
,
Zhou
,
Y.
,
Walsh
,
M.
, and
Blumberg
,
K.
,
2008
, “
Analysis of the Impacts of Fuel Sulfur on Vehicle Emissions in China
,”
Fuel
,
87
(
13–14
), pp.
3147
3154
. 10.1016/j.fuel.2008.03.019
41.
Saiyasitpanich
,
P.
,
Lu
,
M.
,
Keener
,
T. C.
,
Liang
,
F.
, and
Khang
,
S.-J.
,
2005
, “
The Effect of Diesel Fuel Sulfur Content on Particulate Matter Emissions for a Nonroad Diesel Generator
,”
J. Air Waste Manage. Assoc.
,
55
(
7
), pp.
993
998
. 10.1080/10473289.2005.10464685
42.
Palani
,
R.
,
AbdulGani
,
A.
, and
Balasubramanian
,
N.
,
2017
, “
Treatment of Tannery Effluent Using a Rotating Disc Electrochemical Reactor
,”
Water Environ. Res.
,
89
(
1
), pp.
77
85
. 10.2175/106143016X14609975746046
43.
Abdul Jameel
,
A. G.
,
Naser
,
N.
,
Emwas
,
A.-H.
,
Dooley
,
S.
, and
Sarathy
,
S. M.
,
2016
, “
Predicting Fuel Ignition Quality Using 1 H NMR Spectroscopy and Multiple Linear Regression
,”
Energy Fuels
,
30
(
11
), pp.
9819
9835
. 10.1021/acs.energyfuels.6b01690
44.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
. 10.1016/0010-2180(90)90126-C
45.
Chen
,
R.-H.
,
Driscoll
,
J. F.
,
Kelly
,
J.
,
Namazian
,
M.
, and
Schefer
,
R. W.
,
1990
, “
A Comparison of Bluff-Body and Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
71
(
4–6
), pp.
197
217
. 10.1080/00102209008951632
46.
Naser
,
N.
,
Abdul Jameel
,
A. G.
,
Emwas
,
A.-H.
,
Singh
,
E.
,
Chung
,
S. H.
, and
Sarathy
,
S. M.
,
2019
, “
The Influence of Chemical Composition on Ignition Delay Times of Gasoline Fractions
,”
Combust. Flame
,
209
, pp.
418
429
. 10.1016/j.combustflame.2019.07.030
47.
Lin
,
C.
, and
Hsieh
,
M.
,
1996
, “
Emissions of Industrial Furnaces Burning Diesel Fuel Oils of Various Sulfur Contents With Nacl- Contained Atmospheric Air
,”
J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol.
,
31
(
4
), pp.
859
868
. 10.1080/10934529609376393
48.
Allouis
,
C.
,
Romano
,
M.
,
Beretta
,
F.
,
Viegas
,
L.
, and
D’alessio
,
A.
,
1998
, “
Particulate Formation From the Spray Combustion of Heavy Oil and Biofuel
,”
Combust. Sci. Technol.
,
134
(
1–6
), pp.
457
475
. 10.1080/00102209808924145
49.
Maricq
,
M. M.
,
Chase
,
R. E.
,
Xu
,
N.
, and
Laing
,
P. M.
,
2002
, “
The Effects of the Catalytic Converter and Fuel Sulfur Level on Motor Vehicle Particulate Matter Emissions: Light Duty Diesel Vehicles
,”
Environ. Sci. Technol.
,
36
(
2
), pp.
283
289
. 10.1021/es010962l
50.
Liu
,
J.
,
Liu
,
H.
,
Guo
,
X.
,
Yao
,
H.
, and
Chen
,
J.
,
2018
, “
Nitrogen and Sulfur Behavior During Oxy-Fuel Combustion and Its Retention
,”
Oxy-Fuel Combust.
, pp.
87
127
. 10.1016/B978-0-12-812145-0.00005-0
51.
Tang
,
H.
,
Xu
,
M.
,
Hu
,
H.
,
Yang
,
F.
,
Yang
,
Y.
,
Liu
,
H.
,
Li
,
X.
, and
Yao
,
H.
,
2018
, “
In-Situ Removal of Sulfur From High Sulfur Solid Waste During Molten Salt Pyrolysis
,”
Fuel
,
231
, pp.
489
494
. 10.1016/j.fuel.2018.05.123
52.
Li
,
P.
,
Wang
,
F.
,
Mi
,
J.
,
Dally
,
B. B.
,
Mei
,
Z.
,
Zhang
,
J.
, and
Parente
,
A.
,
2014
, “
Mechanisms of NO Formation in MILD Combustion of CH 4 /H 2 Fuel Blends
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19187
19203
. 10.1016/j.ijhydene.2014.09.050
53.
Koehl
,
W. J.
,
Benson
,
J. D.
,
Burns
,
V. R.
,
Gorse
,
R. A.
,
Hochhauser
,
A. M.
,
Knepper
,
J. C.
,
Leppard
,
W. R.
,
Painter
,
L. J.
,
Rapp
,
L. A.
,
Reuter
,
R. M.
, and
Rutherford
,
J. A.
,
1993
, “
Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: The Question of Linearity—Auto/Oil Air Quality Improvement Program
,”
Int. Fuels Lubr. Meet. Expos.
, pp.
3
5
. 10.4271/932727
54.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
. 10.1080/00102200302354
55.
Gonul
,
H. I.
, and
Bilen
,
M.
,
2020
, “
Modeling Absorbers in WFGD System and Prediction of SO2 Removal Rate Based on Size Parameters
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082103
. 10.1115/1.4046384
56.
Clayton
,
R. M.
, and
Back
,
L. H.
,
1989
, “
Physical and Chemical Characteristics of Cenospheres From the Combustion of Heavy Fuel Oil
,”
ASME J. Eng. Gas Turbines Power
,
111
(
4
), pp.
679
684
. 10.1115/1.3240312
57.
Winnes
,
H.
, and
Fridell
,
E.
,
2010
, “
Emissions of NOX and Particles From Manoeuvring Ships
,”
Transp. Res. Part D Transp. Environ.
,
15
(
4
), pp.
204
211
. 10.1016/j.trd.2010.02.003
58.
Contini
,
D.
,
Gambaro
,
A.
,
Donateo
,
A.
,
Cescon
,
P.
,
Cesari
,
D.
,
Merico
,
E.
,
Belosi
,
F.
, and
Citron
,
M.
,
2015
, “
Inter-annual Trend of the Primary Contribution of Ship Emissions to PM 2.5 Concentrations in Venice (Italy): Efficiency of Emissions Mitigation Strategies
,”
Atmos. Environ.
,
102
, pp.
183
190
. 10.1016/j.atmosenv.2014.11.065
59.
Miller
,
C. A.
,
Linak
,
W. P.
,
King
,
C.
, and
Wendt
,
J. O. L.
,
1998
, “
Fine Particle Emissions From Heavy Fuel Oil Combustion in a Firetube Package Boiler
,”
Combust. Sci. Technol.
,
134
(
1–6
), pp.
477
502
. 10.1080/00102209808924146
60.
Groenzin
,
H.
, and
Mullins
,
O. C.
,
2007
,
Asphaltenes, Heavy Oils, and Petroleomics
,
Springer New York
,
New York, NY
.
61.
Goldstein
,
H. L.
, and
Siegmund
,
C. W.
,
1976
, “
Influence of Heavy Fuel Oil Composition and Boiler Combustion Conditions on Particulate Emissions
,”
Environ. Sci. Technol.
,
10
(
12
), pp.
1109
1114
. 10.1021/es60122a006
62.
Fang
,
W.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2017
, “
Dilution Sensitivity of Particulate Matter Emissions From Reactivity-Controlled Compression Ignition Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032204
. 10.1115/1.4035828
You do not currently have access to this content.