Abstract

The gas turbine engine's extreme conditions need a robust design to produce efficient energy and for reliable operation. Flow and thermal analysis are essential for complex aerodynamic and thermodynamic interaction during turbine performance. There is a need to understand and predict the temperature to make the gas turbine engine efficient. This paper will outline the numerical methods applied for primary cooling methods in gas turbine blades. These include impinging leading-edge cooling, internal cooling in the midsection, and pin fin in the trailing edge. The main objective of this paper is to understand the numerical research done on improving gas turbine cooling. The emphasis will be on understanding the present computational fluid dynamics (CFD) techniques applied for gas turbine cooling and further development. This paper briefly outlines the new conjugate heat transfer–based CFD modeling techniques that have evolved over the years due to recent computing power development.

References

1.
Bunker
,
R. S.
,
2008
,
Innovative Gas Turbine Cooling Techniques, WIT Transactions on State of the Art in Science and Engineering
, Vol.
42
,
WIT Press
,
New York
, pp.
199
221
.
2.
Kumar
,
S.
,
2012
, “
Investigation of Heat Transfer and Flow Using Ribs Within Gas Turbine Blade Cooling Passage: Experimental and Hybrid LES/RANS Modeling
,”
Ph.D. thesis
,
University of Wisconsin-Milwaukee
.
3.
Smith
,
L.
,
Karim
,
H.
,
Etemad
,
S.
, and
Pfefferle
,
W. C.
,
2006
,
The Gas Turbine Handbook
,
U S Department of Energy-National Energy Technology Laboratory (NETL)
,
Morgantown, WV
.
4.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Southampton, UK
.
5.
Kumagai
,
M.
,
Amano
,
R. S.
, and
Jensen
,
M. K.
,
2002
, “
Heat Transfer Enhancement by Turbulent Impinging Jets Using a Universal Function Method
,”
Enhanced Heat Transfer
,
9
(
1
), pp.
47
55
. 10.1615/JEnhHeatTransf.v9.i1.50
6.
Amano
,
R. S.
, and
Brandt
,
H.
,
Dec 1984
, “
Numerical Study of Turbulent Axisymmetric Jets Impinging on a Flat Plate and Flowing Into an Axisymmetric Cavity
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
410
417
. 10.1115/1.3243139
7.
Syred
,
N.
,
Khalatov
,
A.
,
Kozlov
,
A.
,
Shchukin
,
A.
, and
Agachev
,
R.
,
2000
, “
Effect of Surface Curvature on Heat Transfer and Hydrodynamics Within a Single Hemispherical Dimple
,”
ASME TURBO EXPO 2000
. 10.1115/2000-gt-0236
8.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomachinery
,
113
(
3
), pp.
321
330
. 10.1115/1.2927879
9.
Dutta
,
S.
, and
Han
,
J. C.
,
1997
, “
Rotational Effects on the Turbine Blade Coolant Passage Heat Transfer
,”
Annual Rev. Heat Transfer
,
9
, pp.
269
314
. 10.1615/annualrevheattransfer.v9.70
10.
Iacovides
,
H. B. E.
,
2007
, “
Launder Internal Blade Cooling: The Cinderella of Computational and Experimental Fluid Dynamics Research in Gas Turbines. Proceedings of the Institution of Mechanical Engineers
,”
Part A: J. Power Energy
,
221
(
3
), pp.
265
290
. 10.1243/09576509JPE325
11.
El-Gabry
,
L.
, and
Kaminski
,
D.
,
2005
, “
Numerical Investigation of Jet Impingement With Cross Flow-Comparison of Yang-Shih and Standard K-ɛ Turbulence Models
,”
An Int. J. Computation Methodol.
,
47
(
5
), pp.
441
469
. 10.1080/10407780590891254
12.
Miyazaki
,
H.
, and
Silbarman
,
E.
,
1972
, “
Flow and Heat Transfer on a Flat Plate Normal to a Two-Dimensional Laminar Jet Issuing From a Nozzle of Finite Height
,”
Int. J. Heat Mass Transfer
,
15
(
11
), pp.
2097
2107
. 10.1016/0017-9310(72)90034-8
13.
Gardon
,
R.
, and
Akfirat
,
J.
,
1965
, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
. 10.1016/0017-9310(65)90054-2
14.
Amano
,
R. S.
, and
Jensen
,
M. K.
,
1982
, “
A Numerical and Experimental Investigation of Turbulent Heat Transport of an Axisymmetric Jet Impinging on a Flat Plate
,”
American Society of Mechanical Engineers, Winter Annual Meeting
,
Phoenix, AZ
,
Nov. 14–19
.
15.
Hallqvist
,
T.
,
2006
, “
Large-Eddy Simulation of Impinging Jets with Heat Transfer
,”
PhD thesis
,
Royal Institute of Technology, Department of Mechanics
,
Stockholm, Sweden
.
16.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
. 10.1016/0142-727X(96)00040-9
17.
Polat
,
S.
,
Mujumdar
,
A.
, and
Douglas
,
W.
,
1986
, “
Prediction of Flow and Heat Transfer Under Multiple Impinging Jets Using Two-Equation Model of Turbulence
,”
Drying Technol.
,
2
, pp.
868
879
.
18.
Launder
,
B. E.
,
1988
, “
On the Computation of Convective Heat Transfer in Complex Turbulent Flows
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1112
1126
. 10.1115/1.3250614
19.
Goldstein
,
R. J.
, and
Timmers
,
J. F.
,
1982
, “
Visualization of Heat Transfer From Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1857
1868
. 10.1016/0017-9310(82)90108-9
20.
Chung
,
Y. M.
, and
Luo
,
K. H.
,
2002
, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1039
1048
. 10.1115/1.1469522
21.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid. Sci.
,
6
(
2
), pp.
111
134
. 10.1016/0894-1777(93)90022-B
22.
Yokobori
,
S.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1983
, “
Transport Phenomena at the Stagnation Region of a Two-Dimensional Impinging Jet
,”
Trans. JSME B
,
49
(
441
), pp.
1029
1039
. 10.1299/kikaib.49.1029
23.
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
,
1996
, “
Effect of Nozzle Geometry and Semi-Confinement on the Potential Core of a Turbulent Axisymmetric Free Jet
,”
Int. Communications Heat Mass Transfer
,
23
(
2
), pp.
155
162
. 10.1016/0735-1933(96)00001-2
24.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structure in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
. 10.1016/0017-9310(96)00027-0
25.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
. 10.1016/S0065-2717(06)39006-5
26.
Le Song
,
G.
, and
Prud’homme
,
M.
,
2007
, “
Prediction of Coherent Vortices in an Impinging Jet With Unsteady Averaging and a Simple Turbulence Model
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1125
1135
. 10.1016/j.ijheatfluidflow.2007.02.006
27.
Jarrin
,
N.
, and
Addad
,
Y.
,
2002
,
Synthetic Turbulent Inflow Conditions Based on a Vortex Method for Large-Eddy Simulation
,
Progress in Computational Fluid Dynamics
,
Chatou Cedex, France
.
28.
Piomelli
,
U.
, and
Chasnov
,
J.
,
1996
,
Large Eddy Simulations: Theory and Applications, in Turbulence and Transition Modeling
,
Kluwer Academic Publisher
,
Dordrecht, the Netherlands
,
269
336
.
29.
Cziesla
,
T.
,
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Mitra
,
N. K.
,
2001
, “
Large-Eddy Simulation of Flow and Heat Transfer in an Impinging Slot Jet
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
500
508
. 10.1016/S0142-727X(01)00105-9
30.
Rhea
,
S.
,
Bini
,
M.
,
Fairweather
,
M.
, and
Jones
,
W. P.
,
2009
, “
RANS Modeling and LES of a Single-Phase, Impinging Plane Jet
,”
Comput. Chem. Eng.
,
33
(
8
), pp.
1344
1353
. 10.1016/j.compchemeng.2009.01.020
31.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
. 10.2514/2.1964
32.
Metzger
,
D. E.
,
Barry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin-Fins
,”
ASME J. Heat Transfer
,
V 104
(
4
), pp.
700
706
. 10.1115/1.3245188
33.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin-Fins
,”
ASME 1982 International Gas Turbine Conference and Exhibit
. 10.1115/82-gt-138
34.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Array
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
44
50
. 10.1115/1.3244247
35.
Van Fossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin-Fins
,”
J. Eng. Power
,
104
(
2
), pp.
268
274
. 10.1115/1.3227275
36.
Brigham
,
B. A.
, and
Van Fossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
245
. 10.1115/1.3239541
37.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-End Wall Fillet
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
926
932
. 10.1115/1.2910502
38.
Olson
,
D. A.
,
1992
, “
Heat Transfer in Thin, Compact Heat Exchangers With Circular, Rectangular, or Pin-Fin Flow Passages
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
373
382
. 10.1115/1.2911285
39.
Grannis
,
V. B.
, and
Sparrow
,
E. M.
,
1991
, “
Numerical Simulation of Fluid Flow Through an Array of Diamond-Shaped Pin Fins
,”
Numerical Heat Transfer A
,
19
(
4
), pp.
381
403
. 10.1080/10407789108944856
40.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2010
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
ASME
Paper No. GT-2010-23536, Glasgow, UK
. 10.1115/gt2010-23536
41.
Effendy
,
M.
,
Yao
,
Y.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2014
, “
Predicting Film Cooling Performance of Trailing-Edge Cutback Turbine Blades by Detached Eddy Simulation
,”
AIAA 2014-0279
.
42.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
J. Turbomach.
,
128
(
2
), pp.
292
300
. 10.1115/1.2137739
43.
Effendy
,
M.
,
Yao
,
Y.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip-Thicknesses
,”
J. Appl. Therm. Eng.
,
99
, pp.
434
445
. 10.1016/j.applthermaleng.2015.11.103
44.
Effendy
,
M.
,
Yao
,
Y.
, and
Marchant
,
D. R.
,
2017
, “
Detached-Eddy Simulation of Trailing-Edge (TE) Cutback Turbine Blade Cooling
,”
Matec Web of Conference
,
135
(
8
), p.
13
. 10.1051/matecconf/201713500008
45.
Bunker
,
R. S.
, and
Donnellan
,
K. F.
,
2003
, “
Heat Transfer and Friction Factors for Flows Inside Circular Tubes with Concavity Surfaces
,”
ASME
Paper No. GT-2003-38053
. 10.1115/gt2003-38053
46.
Syred
,
N.
,
Khalatov
,
A.
,
Kozlov
,
A.
,
Shchukin
,
A.
, and
Agachev
,
R.
,
2000
, “
Effect of Surface Curvature on Heat Transfer and Hydrodynamics Within a Single Hemispherical Dimple
,”
ASME
Paper No. 2000-GT-236
. 10.1115/2000-gt-0236
47.
Murzin
,
V. N.
,
Stoklitskii
,
S. A.
, and
Chebotarev
,
A. P.
,
1986
, “
Creation of Solitary Vortices in a Flow Around Shallow Spherical Depressions
,”
Soviet Technical Phys. Lett.
,
12
(
11
), pp.
547
549
.
48.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
,
1993
, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transfer Res.
,
25
(
2
), pp.
156
160
.
49.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid. Sci.
,
7
(
1
), pp.
1
8
. 10.1016/0894-1777(93)90075-T
50.
Isaev
,
S. A.
,
Leont'ev
,
A. I.
, and
Baranov
,
P. A.
,
2000
, “
Identification of Self-Organized Vortex Like Structures in Numerically Simulated Turbulent Flow of a Viscous Incompressible Liquid Streaming Around a Well on a Plane
,”
Tech. Phys. Lett.
,
26
(
1
), pp.
15
18
. 10.1134/1.1262724
51.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
International Journal of Rotating Machinery
,
2013
, p.
32
.
52.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation Investigation of Flow and Heat Transfer in a Channel With Dimples and Protrusions
,”
ASME J. Turbomach.
,
130
(
4
), p.
041016
.10.1115/1.2812412
53.
Isaev
,
S. A.
,
Kornev
,
N. V.
,
Leontiev
,
A. I.
, and
Hassel
,
E.
,
2010
, “
Influence of the Reynolds Number and the Spherical Dimple Depth on Turbulent Heat Transfer and Hydraulic Loss in a Narrow Channel
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
178
197
. 10.1016/j.ijheatmasstransfer.2009.09.042
54.
Isaev
,
S. A.
,
Schelchkov
,
A. V.
,
Leontiev
,
A. I.
,
Baranov
,
P. A.
, and
Gulcova
,
M. E.
,
2016
, “
Numerical Simulation of the Turbulent Air Flow in the Narrow Channel With a Heated Wall and a Spherical Dimple Placed on it for Vortex Heat Transfer Enhancement Depending on the Dimple Depth
,”
Int. J. Heat Mass Transfer
,
94
, pp.
426
448
. 10.1016/j.ijheatmasstransfer.2015.11.002
55.
Lan
,
J.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2011
, “
Effect of Leading-Edge Boundary Layer Thickness on Dimple Flow Structure and Separation Control
,”
J. Mech. Sci. Technol.
,
25
(
1
), pp.
3243
3251
. 10.1007/s12206-011-0823-z
56.
Xia
,
H. H.
,
Tang
,
G. H.
,
Shi
,
Y.
, and
Tao
,
W. Q.
,
2014
, “
Simulation of Heat Transfer Enhancement by Longitudinal Vortex Generators in Dimple Heat Exchangers
,”
Energy
,
74
, pp.
27
36
. 10.1016/j.energy.2014.02.075
57.
Xie
,
Y.
,
Qu
,
H.
, and
Zhang
,
D.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in Rectangular Channel With Teardrop Dimple/Protrusion
,”
Int. J. Heat Mass Transfer
,
84
, pp.
486
496
. 10.1016/j.ijheatmasstransfer.2015.01.055
58.
Yoon
,
H. S.
,
Park
,
S. H.
,
Choi
,
C.
, and
Ha
,
M. Y.
,
2015
, “
Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage With a Teardrop Dimple Surface
,”
Int. J. Therm. Sci.
,
89
, pp.
121
135
.
59.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
. 10.1016/0017-9310(71)90009-3
60.
Burggraf
,
F.
,
1979
,
Augmentation of Convective Heat and Mass Transfer
,
A. E. Bergles and R. L. Webb, eds., ASME
,
New York
, pp.
70
79
.
61.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib Roughened Surface
,”
Int. J. Heat Mass Transfer
,
21
, pp.
1143
1156
. 10.1016/0017-9310(78)90113-8
62.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
. 10.1016/0017-9310(78)90113-8
63.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
. 10.1115/1.3239782
64.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
. 10.1115/1.3250487
65.
Han
,
J. C.
, and
Park
,
J. S.
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1988
), pp.
183
195
. 10.1016/0017-9310(88)90235-9
66.
Han
,
J. C.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotating Machinery
,
10
,
Article ID 517231
, pp.
443
457
. 10.1155/s1023621x04000442
67.
Shen
,
J. R.
,
Wang
,
Z.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Byerley
,
A. R.
,
1996
, “
Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes
,”
ASME J. Turbomach.
,
188
, pp.
428
433
. 10.1115/1.2836683
68.
Thurman
,
D.
, and
Poinsette
,
P.
,
2000
, “
Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed
,”
ASME
Paper No. 2000-GT-233
. 10.1115/2000-gt-0233
69.
Locavides
,
H.
,
1998
, “
Computation of Flow and Heat Transfer Through Rotating Ribbed Passage International Journal of Heat and Fluid Flow
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
393
400
. 10.1016/S0142-727X(98)10023-1
70.
Bonhoff
,
B.
,
Parneix
,
S.
,
Leusch
,
J.
, and
Johnson
,
B.
,
1999
, “
Experimental and Numerical Study of Developed Flow and Heat Transfer in Coolant Channels With 45-Degree Ribs
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
311
319
. 10.1016/S0142-727X(99)00011-9
71.
Ooi
,
A.
,
Lacarrino
,
G.
,
Durbin
,
P.
, and
Behnia
,
M.
,
2002
, “
Reynold Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow.
,
23
(
6
), pp.
750
757
. 10.1016/s0142-727x(02)00188-1
72.
Al Qahtani
,
Jang
,
Y.-J.
,
Chen
,
H. C.
, and
Chin-Han
,
J.
,
2002
, “
Prediction of Flow and Heat Transfer in Rotating Two Pass Rectangular Channel With 45-Degree Rib Turbulator
,”
ASME J. Turbomach.
,
120
(
2
), pp.
242
250
. 10.1115/1.1450568
73.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-rib Turbulator and Bleed Holes
,”
Heat Mass Transfer.
,
49
(
2
), pp.
1141
1158
. 10.1007/s00231-013-1156-5
74.
Kumar
,
S.
, and
Amano
,
R. S.
,
2014
, “
Numerical and Experimental Investigation for Internal Cooling of Two Pass Gas Turbine Blades Channels Using Broken V Ribs
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
5A
, p.
12
. 10.1115/gt2014-26147
75.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
November 2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
. 10.1115/1.4043654
76.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
Sep 2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
.10.1115/1.4046731
77.
Kajishima
,
T.
, and
Miyake
,
Y.
,
1992
, “
A Discussion on Eddy Viscosity Models on the Basis of the Large Eddy Simulation of Turbulent Flow in a Square Duct
,”
Computers Fluids
,
21
(
175
), pp.
151
161
. 10.1016/0045-7930(92)90015-N
78.
Choi
,
D.
,
Prasad
,
D.
,
Wang
,
M.
, and
Pierce
,
C.
,
2000
, “
Evaluation of an Industrial CFD Code for LES Applications
,”
Center for Turbulence Research, Proceedings of the Summer Program
,
Stanford, CA
,
July 2
, pp.
221
227
.
79.
Hébrard
,
J.
,
Métais
,
O.
, and
Slinas-Vasquez
,
M.
,
2004
, “
Large-Eddy Simulation of Turbulent Duct Flow: Heating and Curvature Effects
,”
Int. J. Heat Fluid Flow
,
25
, pp.
569
580
. 10.1016/j.ijheatfluidflow.2004.03.002
80.
Pallares
,
J.
, and
Davidson
,
L.
,
2000
, “
Large-Eddy Simulations of Turbulent Flow in a Rotating Square Duct
,”
Phys. Fluids
,
12
(
11
), pp.
2878
2898
. 10.1063/1.1309533
81.
Pallares
,
J.
, and
Davidson
,
L.
,
2002
, “
Large-Eddy Simulations of Turbulent Heat Transfer in Stationary and Rotating Square Ducts
,”
Phys. Fluids
,
14
(
8
), pp.
2804
2816
. 10.1063/1.1489684
82.
Yang
,
K.-S.
, and
Ferziger
,
J. H.
,
1993
, “
Large-Eddy Simulation of Turbulent Obstacle Flow Using a Dynamic Subgrid-Scale Model
,”
AIAA J.
,
31
(
8
), pp.
1406
1413
. 10.2514/3.49081
83.
Murata
,
A.
, and
Mochizuki
,
S.
,
2000
, “
Large Eddy Simulation With a Dynamic Subgrid Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Transverse Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1243
1259
. 10.1016/S0017-9310(99)00205-7
84.
Murata
,
A.
, and
Mochizuki
,
S.
,
2004
, “
Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel With Sharp 180-deg. Turns
,”
Int. J. Heat Mass Transfer
,
47
(
176
), pp.
683
698
. 10.1016/j.ijheatmasstransfer.2003.07.022
85.
Murata
,
A.
, and
Mochizuki
,
S.
,
2004
, “
Centrifugal Buoyancy Effects on Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel With Sharp 180-deg. Turns
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3215
3231
. 10.1016/j.ijheatmasstransfer.2004.02.013
86.
Murata
,
A.
, and
Mochizuki
,
S.
,
2014
, “
Effect of Rib Orientation and Channel Rotation on Turbulent Heat Transfer in a Two-Pass Square Channel With Sharp 180° Turns Investigated by Using Large Eddy Simulation
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2599
2618
. 10.1016/j.ijheatmasstransfer.2003.12.016
87.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
92
104
. 10.1016/j.ijheatfluidflow.2004.07.002
88.
Abdel-Wahab
,
S.
, and
Tafti
,
D. K.
, “
Large Eddy Simulation of Flow and Heat Transfer in a 90° Ribbed Duct with Rotation—Effect of Coriolis Forces
,”
Proceedings of the ASME Turbo Expo 2004
,
Vienna, Austria
,
ASME Paper No. GT2004-53796,2004
.
89.
Takahashi
,
T.
, and
Watanabe
,
K.
,
2004
, “
Large Eddy Simulation of Flow and Heat Transfer in a Rectangular Channel With Crossed Angled Ribs
,”
Proceedings of the ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
.
90.
Saha
,
A. K.
, and
Acharya
,
S.
,
2003
, “
Flow and Heat Transfer in an Internally Ribbed Duct With Rotation: An Assessment of LES and URANS
,”
Proceedings of the ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
.
91.
Zhang
,
G.
,
Liu
,
J.
,
Sundén
,
B.
, and
Xie
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
. 10.1115/1.4047329
92.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
Jan 2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.10.1115/1.4047600
93.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
.10.1115/1.4042824
94.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
. 10.1115/1.4035829
95.
Galeana
,
D.
, and
Beyene
,
A.
,
2020
, “
A Swirl Cooling Flow Experimental Investigation on a Circular Chamber Using Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042002
. 10.1115/1.4044575
96.
Masci
,
R.
, and
Sciubba
,
E.
,
February 2018
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
020901
. 10.1115/1.4038462
97.
Rodriguez
,
J.
,
Cavadini
,
P.
,
Brunelli
,
M.
,
Custer
,
C.
, and
Carpenter
,
C.
,
2014
, “
High Fidelity CHT CFD for Gas Turbine Heat Transfer Application
,”
Proceeding of 1st Global Power and Propulsion Forum
,
Paper No. GPPF-2017-171
.
98.
The National Academics Press
,
2020
,
National Academics of Sciences, Engineering and Medicine, Advanced Technologies for Gas Turbines
,
The National Academics Press
,
Washington, DC
You do not currently have access to this content.