Abstract

Solid oxide fuel cells (SOFC) can generate electricity and heat with a minimal negative impact on the environment and with high electrical efficiency (∼60%). SOFC stacks are the key component of cogeneration units in the range from several kiloWatts up to hundreds of kiloWatts. The larger power output of a system is achieved by the multiplication of a number of separate modules, which are usually based on 1000 W class stacks. In the design of the SOFC stack, the following parts are distinguished: two terminating plates (top and bottom), interconnectors, separators, gaskets, electrical connections, fuel and oxidant delivery lines, and fuel cells. Geometric features and physical and chemical properties of the aforementioned components affect the performance and mechanical strength of the SOFC stack. Two different approaches for air supply can be used and were investigated, namely internal and external manifolding. Comprehensive analysis of the geometric features of the stack together with inserts, the supply and discharge piping of reaction gases, was performed in order to determine the optimal operating conditions on the latest third generation of the SOFC stack, which is currently under development at the Institute of Power Engineering (IEN). This study includes the results of laboratory tests and numerical studies. The results obtained indicate the set of parameters that influence the performance and lifetime of SOFCs. Among others, the most important variables are as follows: fuel type, operating conditions, homogeneity of temperature distribution, and uniformity of gas flow.

References

1.
James
,
B. D.
, and
DeSantis
,
D. A.
,
2015
,
Manufacturing Cost and Installed Price Analysis of Stationary Fuel Cell Systems, (Strategic Analysis Inc.)
, Revision 3.
2.
McPhail
,
S.
,
Kiviaho
,
J.
, and
Conti
,
B.
,
2017
,
The Yellow Pages of SOFC Technology, International Status of SOFC Deployment
,
VTT Technical Research Centre of Finland
,
VTT, Finland
.
3.
Kong
,
W.
,
Han
,
Z.
,
Lu
,
S.
,
Gao
,
X.
, and
Wang
,
X.
,
2020
, “
A Novel Interconnector Design of SOFC
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20329
20338
. 10.1016/j.ijhydene.2019.10.252
4.
Bove
,
R.
, and
Ubertini
,
S.
,
2006
, “
Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results
,”
J. Power Sources
,
159
(
1
), pp.
543
559
. 10.1016/j.jpowsour.2005.11.045
5.
Peksen
,
M.
,
2011
, “
A Coupled 3D Thermofluid-Thermomechanical Analysis of a Planar Type Production Scale SOFC Stack
,”
Int. J. Hydrogen Energy
,
6
(
18
), pp.
11914
11928
. 10.1016/j.ijhydene.2011.06.045
6.
Huijsmans
,
J. P. P.
,
2001
, “
Ceramics in Solid Oxide Fuel Cells
,”
Curr. Opin. Solid State Mater. Sci.
,
5
(
4
), pp.
317
323
. 10.1016/S1359-0286(00)00034-6
7.
Das
,
S. K.
,
2020
, “
Analytical Expression for Concentration Overpotential of Anode-Supported Solid Oxide Fuel Cell Based on the Dusty Gas Model
,”
ASME J. Electrochem. Energy Conv. Stor.
,
17
(
3
), p.
031017
. 10.1115/1.4046108
8.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
. 10.1016/S0378-7753(00)00556-5
9.
Ding
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2021
, “
Fuel-Adaptability Analysis of Intermediate-Temperature-SOFC/Gas Turbine Hybrid System With Biomass Gas
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022104
. 10.1115/1.4047759
10.
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
,
2005
, “
SOFC Mathematic Model for Systems Simulations–Part 2: Definition of an Analytical Model
,”
Int. J. Hydrogen Energy
,
30
(
2
), pp.
189
200
. 10.1016/j.ijhydene.2004.04.018
11.
Kupecki
,
J.
,
Jewulski
,
J.
, and
Motyliński
,
K.
,
2015
, “
Parametric Evaluation of a Micro-CHP Unit With Solid Oxide Fuel Cells Integrated with Oxygen Transport Membranes
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
11633
11640
. 10.1016/j.ijhydene.2015.03.127
12.
Fragiacomo
,
P.
,
Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
. 10.1115/1.4039872
13.
Kupecki
,
J.
, and
Badyda
,
K.
,
2011
, “
SOFC-Based Micro-CHP System as an Example of Efficient Power Generation Unit
,”
Arch. Thermodyn.
,
32
(
3
), pp.
33
43
. 10.2478/v10173-011-0011-7
14.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
,
2004
, “
A Numerical Study of Cell-to-Cell Varations in SOFC Stack
,”
J. Power Sources
,
126
(
1–2
), pp.
76
87
. 10.1016/j.jpowsour.2003.08.034
15.
Bucheli
,
O.
,
Molinelli
,
M.
,
Zähringer
,
T.
,
Thorn
,
E.
, and
Diethelm
,
S.
,
2007
, “
Design of 500 W Class SOFC Stack with Homogeneous Cell Performance
,”
10th International Symposium on Solid Oxide Fuel Cells
,
Nara, Japan
, ECS Transactions 7.
16.
Bove
,
R.
, and
Sammes
,
N. M.
,
2005
, “
The Effect of Current Collectors Configuration on the Performance of a Tubular SOFC
,”
Proceedings of the Ninth International Symposium on Solid Oxide Fuel Cells (SOFC IX)
,
Quebec City, Canada
,
May 15–20
.
17.
Peksen
,
M.
,
Masri
,
A.
,
Blum
,
L.
, and
Stolten
,
D.
,
2013
, “
3D Transient Thermomechanical Behaviour of a Full Scale SOFC Short Stack
,”
Int. J. Hydrogen Energy
,
38
(
10
), pp.
4099
4107
. 10.1016/j.ijhydene.2013.01.072
18.
Wuillemin
,
Z.
,
Faes
,
A.
,
Diethelm
,
S.
,
Nakajo
,
A.
,
Autissier
,
N.
, and
Favrat
,
D.
,
2008
, “
Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points
,”
Proceedings of the 8th European Solid Oxide Fuel Cell Forum.
19.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Herle
,
J. V.
, and
Favrat
,
D.
,
2008
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks
,”
8th European Fuel Cell Forum
,
Lucerne, Switzerland
.
20.
Molinelli
,
M.
,
Larrain
,
D.
,
Autissier
,
N.
,
Ihringer
,
R.
, and
Sfeir
,
J.
,
2006
, “
Dynamic Behaviour of SOFC Short Stacks
,”
J. Power Sources
,
154
(
2
), pp.
394
403
. 10.1016/j.jpowsour.2005.10.040
21.
Myung
,
J.
,
Ko
,
H. J.
,
Lee
,
J.
, and
Hyun
,
S.
,
2011
, “
Optimization of Flow Rate for Improving Performance and Stability of Ni-YSZ Based Solid Oxide Fuel Cells Using CH4 Fuel
,”
Int. J. Electrochem. Sci.
,
6
(
5
), pp.
1617
1629
.
22.
Canhai
,
L.
,
Koeppel
,
B. J.
,
Choi
,
K. S.
,
Recknagle
,
K. P.
,
Sun
,
X.
,
Lawrence
,
C. A.
,
Korolev
,
V. N.
, and
Mohammad
,
K. A.
,
2011
, “
A Quasi-Two-Dimensional Electrochemistry Modeling Tool for Planar Solid Oxide Fuel Cell Stacks
,”
J. Power Sources
,
196
(
6
), pp.
3204
3222
.
23.
Su
,
S.
,
He
,
H.
,
Chen
,
D.
,
Zhu
,
W.
,
Wu
,
Y.
,
Kong
,
W.
,
Wang
,
B.
, and
Lu
,
L.
,
2015
, “
Flow Distribution Analyzing for the Solid Oxide Fuel Cell Short Stacks with Rectangular and Discrete Cylindrical rib Configurations
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
577
592
. 10.1016/j.ijhydene.2014.10.125
24.
Duhn
,
J. D.
,
Jensen
,
A. D.
,
Wedel
,
S.
, and
Wix
,
C.
,
2016
, “
Optimization of a new Flow Design for Solid Oxide Cells Using Computational Fluid Dynamics Modelling
,”
J. Power Sources
,
336
, pp.
261
271
. 10.1016/j.jpowsour.2016.10.060
25.
Dong
,
S. K.
,
Jung
,
W. N.
,
Rashid
,
K.
, and
Kashimoto
,
A.
,
2016
, “
Design and Numerical Analysis of a Planar Anode-Supported SOFC Stack
,”
Renewable Energy
,
94
(
C
), pp.
637
650
. 10.1016/j.renene.2016.03.098
26.
Yan
,
D.
,
Bin
,
Z.
,
Fang
,
D.
,
Luo
,
J.
,
Wang
,
X.
, and
Pu
,
J.
,
2013
, “
Feasibility Study of an External Manifold for Planar Intermediate-Temperature Solid Oxide Fuel Cells Stack
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
660
666
.
27.
Huanga
,
C. M.
,
Shya
,
S. S.
,
Li
,
H. H.
, and
Lee
,
C. H.
,
2010
, “
The Impact of Flow Distributors on the Performance of Planar Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
19
), pp.
6280
6286
. 10.1016/j.jpowsour.2010.04.073
28.
Wang
,
J.
,
2011
, “
Theory of Flow Distribution in Manifolds
,”
Chem. Eng. J.
,
168
(
3
), pp.
1331
1345
. 10.1016/j.cej.2011.02.050
29.
Boersma
,
R. J.
, and
Sammes
,
N. M.
,
1996
, “
Distribution of gas Flow in Internally Manifolded Solid Oxide Fuel-Cell Stacks
,”
J. Power Sources
,
66
(
1–2
), pp.
41
45
. 10.1016/s0378-7753(96)02469-x
30.
Hirata
,
H.
,
Nakagaki
,
T.
, and
Hori
,
M.
,
1999
, “
Effect of gas Channel Height on gas Flow and gas Diffusion in a Molten Carbonate Fuel Cell Stack
,”
J. Power Sources
,
83
(
1–2
), pp.
41
49
. 10.1016/S0378-7753(99)00253-0
31.
Chen
,
C.-H.
,
Jung
,
S.-P.
, and
Yen
,
S.-C.
,
2007
, “
Flow Distribution in the Manifold of PEM Fuel Cell Stack
,”
J. Power Sources
,
173
(
1
), pp.
249
263
. 10.1016/j.jpowsour.2007.05.007
32.
Błesznowski
,
M.
,
2018
, “
Thermodynamics and Transport Processes in Fuel Cells (in Polish)
,”
doctoral dissertation
,
Politechnika Warszawska
,
Warsaw, Poland
.
You do not currently have access to this content.