Abstract

In solar thermochemical redox cycles for H2O/CO2-splitting, a large portion of the overall energy demand of the system is associated with heating the redox material from the oxidation temperature to the reduction temperature. Hence, an important measure to improve the efficiency is recuperation of sensible heat stored in the redox material. A solid–solid heat exchanger can be subjected to undesirable oxygen crossover, which decreases the oxygen uptake capacity of the redox material and consequently the system efficiency. We investigate the extent of this crossover in ceria-based cycles, to identify, under which conditions a heat exchanger that allows oxygen crossover can improve the system efficiency. In a thermodynamic analysis, we calculate the amount of transferred oxygen as a function of the heat exchanger efficiency and show the system efficiency of such a concept. A second law analysis is applied to the model to check the feasibility of calculated points of operation. For the investigated parameter set, the heat exchanger design improves the system efficiency by a factor of up to 2.1.

References

References
1.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
. 10.1021/acs.energyfuels.5b00351
2.
Al-Raqom
,
F.
, and
Klausner
,
J. F.
,
2013
, “
Reactivity of Iron/Zirconia Powder in Fluidized Bed Thermochemical Hydrogen Production Reactors
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012201
. 10.1115/1.4024856
3.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012601
. 10.1115/1.3068336
4.
Holzemer-Zerhusen
,
P.
,
Brendelberger
,
S.
,
von Storch
,
H.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2020
, “
Efficiency Assessment of Solar Redox Reforming in Comparison to Conventional Reforming
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
4137
4151
. 10.1016/j.ijhydene.2019.12.065
5.
Brendelberger
,
S.
,
Rosenstiel
,
A.
,
Lopez-Roman
,
A.
,
Prieto
,
C.
, and
Sattler
,
C.
,
2020
, “
Performance Analysis of Operational Strategies for Monolithic Receiver-Reactor Arrays in Solar Thermochemical Hydrogen Production Plants
,”
Int. J. Hydrogen Energy
,
45
(
49
), pp.
26104
26116
. https://doi.org/10.1016/j.ijhydene.2020.06.191
6.
Fischer
,
F.
, and
Tropsch
,
H.
,
1923
, “
Über die Herstellung Synthetischer Ölgemische (Synthol) Durch Aufbau aus Kohlenoxyd und Wasserstoff
,”
Brennst. Chem
,
4
, pp.
276
285
.
7.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
. 10.1039/C6EE03776C
8.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
. 10.1098/rsta.2010.0114
9.
Bulfin
,
B.
,
Lowe
,
A. J.
,
Keogh
,
K. A.
,
Murphy
,
B. E.
,
Lübben
,
O.
,
Krasnikov
,
S. A.
, and
Shvets
,
I. V.
,
2013
, “
Analytical Model of CeO2 Oxidation and Reduction
,”
J. Phys. Chem. C
,
117
(
46
), pp.
24129
24137
. 10.1021/jp406578z
10.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
. 10.1016/0022-3697(75)90192-4
11.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ion.
,
129
(
1–4
), pp.
63
94
. 10.1016/S0167-2738(99)00318-5
12.
Warren
,
K. J.
,
Reim
,
J.
,
Randhir
,
K.
,
Greek
,
B.
,
Carrillo
,
R.
,
Hahn
,
D. W.
, and
Scheffe
,
J. R.
,
2017
, “
Theoretical and Experimental Investigation of Solar Methane Reforming Through the Nonstoichiometric Ceria Redox Cycle
,”
Energy Technol.
,
5
(
11
), pp.
2138
2149
. 10.1002/ente.201700083
13.
Bulfin
,
B.
,
Call
,
F.
,
Vieten
,
J.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Shvets
,
I. V.
,
2016
, “
Oxidation and Reduction Reaction Kinetics of Mixed Cerium Zirconium Oxides
,”
J. Phys. Chem. C
,
120
(
4
), pp.
2027
2035
. 10.1021/acs.jpcc.5b08729
14.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
. 10.1126/science.1197834
15.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
(
15
), pp.
4163
4173
. 10.1007/s10853-010-4506-4
16.
Brendelberger
,
S.
,
Roeb
,
M.
,
Lange
,
M.
, and
Sattler
,
C.
,
2015
, “
Counter Flow Sweep gas Demand for the Ceria Redox Cycle
,”
Sol. Energy
,
122
, pp.
1011
1022
. 10.1016/j.solener.2015.10.036
17.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
. 10.1021/ef402492e
18.
Lapp
,
J.
,
Davidson
,
J.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
. 10.1016/j.energy.2011.10.045
19.
Brendelberger
,
S.
,
Holzemer-Zerhusen
,
P.
,
von Storch
,
H.
, and
Sattler
,
C.
,
2019
, “
Performance Assessment of a Heat Recovery System for Monolithic Receiver-Reactors
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021008
. 10.1115/1.4042241
20.
Muhich
,
C. L.
,
Blaser
,
S.
,
Hoes
,
M. C.
, and
Steinfeld
,
A.
,
2018
, “
Comparing the Solar-to-Fuel Energy Conversion Efficiency of Ceria and Perovskite Based Thermochemical Redox Cycles for Splitting H2O and CO2
,”
Int. J. Hydrogen Energy
,
43
(
41
), pp.
18814
18831
. 10.1016/j.ijhydene.2018.08.137
21.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
. 10.1115/1.2969781
22.
Miller
,
J. E.
,
Allendorf
,
M. A.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
Diver
,
R. B.
,
Ermanoski
,
I.
,
Evans
,
L. R.
,
Hogan
,
R. E.
, and
McDaniel
,
A. H.
2012, Development and Assessment of Solar-Thermal Activated Fuel Production: Phase 1 Summary, Sandia Report. Sandia National Laboratories, Albuquerque, NM.
23.
Mayer
,
L. J.
, and
Darryl
,
J. L.
,
2011
, “
Thermal Recuperation Modeling of a Solar Thermochemical Reactor
,”
Proceedings of the ASME 2011 5th International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10
.
24.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
. 10.1115/1.4023357
25.
Richter
,
S.
,
Brendelberger
,
S.
,
Gersdorf
,
F.
,
Oschmann
,
T.
, and
Sattler
,
C.
,
2020
, “
Demonstration Reactor System for the Indirect Solar-Thermochemical Reduction of Redox Particles—The Particle Mix Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
5
). 10.1115/1.4046315
26.
Felinks
,
J.
,
Brendelberger
,
S.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2014
, “
Heat Recovery Concept for Thermochemical Processes Using a Solid Heat Transfer Medium
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1004
1011
. 10.1016/j.applthermaleng.2014.08.036
27.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
. 10.1115/1.4023356
28.
Ermanoski
,
I.
, and
Orozco
,
A.
C2R2: Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing, SAND2015-7320, SANDIA, Editor. 2015, SAND2015-7320.
29.
Falter
,
C. P.
, and
Pitz-Paal
,
R.
,
2017
, “
A Generic Solar-Thermochemical Reactor Model With Internal Heat Diffusion for Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
144
, pp.
569
579
. 10.1016/j.solener.2017.01.063
30.
Falter
,
C.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2017
, “
Perspectives of Advanced Thermal Management in Solar Thermochemical Syngas Production Using a Counter-Flow Solid-Solid Heat Exchanger
,”
SolarPACES 2016
,
Abu Dhabi
,
Oct. 11–14, 2016
.
31.
Falter
,
C. P.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2015
, “
Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
122
, pp.
1296
1308
. 10.1016/j.solener.2015.10.042
32.
Siegrist
,
S.
,
von Storch
,
H.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Moving Brick Receiver–Reactor: A Solar Thermochemical Reactor and Process Design With a Solid–Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021009
. 10.1115/1.4042069
33.
The Python Language Reference. [cited 2019 12-13-2019], https://docs.python.org/3.6/reference/index.html
34.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
,
Hack
,
K.
,
Jung
,
I. H.
,
Kang
,
Y. B.
,
Melançon
,
J.
,
Pelton
,
A. D.
,
Petersen
,
S.
,
Robelin
,
C.
,
Sangster
,
J.
,
Spencer
,
P.
, and
Van Ende
,
M. A.
,
2016
, “
FactSage Thermochemical Software and Databases, 2010–2016
,”
Calphad
,
54
, pp.
35
53
. 10.1016/j.calphad.2016.05.002
35.
Touloukian
,
Y.
, and
Buyco
,
E.
,
1970
,
Thermophysical Properties of Matter-The TPRC Data Series. Volume 5. Specific Heat-Nonmetallic Solids
,
Thermophysical Properties Research Center, New York
.
36.
Bulfin
,
B.
,
Call
,
F.
,
Lange
,
M.
,
Lübben
,
O.
,
Sattler
,
C.
,
Pitz-Paal
,
R.
, and
Shvets
,
I. V.
,
2015
, “
Thermodynamics of CeO2 Thermochemical Fuel Production
,”
Energy Fuels
,
29
(
2
), pp.
1001
1009
. 10.1021/ef5019912
37.
Xu
,
C.
,
Wang
,
Z.
,
Li
,
X.
, and
Sun
,
F.
,
2011
, “
Energy and Exergy Analysis of Solar Power Tower Plants
,”
Appl. Therm. Eng.
,
31
(
17
), pp.
3904
3913
. 10.1016/j.applthermaleng.2011.07.038
38.
Dubbel—Taschenbuch für den Maschinenbau, 23. Auflage (Hrsg.: Grote, K.-H.; Feldhusen, J.). Berlin/Heidelberg/New York/London/Paris/Tokyo/Hong Kong. 2012, Barcelona: Springer-Verlag.
39.
Borgnakke
,
C.
, and
Sonntag
,
R. E.
,
2009
,
Fundamentals of Thermodynamics
, 7th ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
40.
Bulfin
,
B.
,
Hoffmann
,
L.
,
de Oliveira
,
L.
,
Knoblauch
,
N.
,
Call
,
F.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmucker
,
M.
,
2016
, “
Statistical Thermodynamics of Non-stoichiometric Ceria and Ceria Zirconia Solid Solutions
,”
Phys. Chem. Chem. Phys.
,
18
(
33
), pp.
23147
23154
. 10.1039/C6CP03158G
41.
Chase
,
M.W.
, and
S. National Institute of, and Technology
,
1998
,
NIST-JANAF Thermochemical Tables
,
American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology
,
[Washington, DC]; Woodbury, NY.
42.
Barin
,
I.
,
1995
,
Thermochemical Data of Pure Substances
, 3rd ed.,
Wiley-VCH
,
Weinheim
.
43.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
, and
Lipiński
,
W.
,
2018
, “
Thermodynamic Analyses of Fuel Production via Solar-Driven Non-Stoichiometric Metal Oxide Redox Cycling. Part 1. Revisiting Flow and Equilibrium Assumptions
,”
Energy Fuels
,
32
(
10
), pp.
10838
10847
. 10.1021/acs.energyfuels.8b02081
44.
Brendelberger
,
S.
,
von Storch
,
H.
,
Bulfin
,
B.
, and
Sattler
,
C.
,
2017
, “
Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles–Assessment of Mechanical-, Jet-and Thermochemical Pumping Systems
,”
Sol. Energy
,
141
, pp.
91
102
. 10.1016/j.solener.2016.11.023
45.
Brendelberger
,
S.
,
Vieten
,
J.
,
Vidyasagar
,
M. J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Demonstration of Thermochemical Oxygen Pumping for Atmosphere Control in Reduction Reactions
,”
Sol. Energy
,
170
, pp.
273
279
. 10.1016/j.solener.2018.05.063
You do not currently have access to this content.