Abstract

With the rapid development of clean energy, the combined cooling and heating power (CCHP) and hybrid energy storage system (HESS) have become matured significantly. However, further optimizing the configuration of the energy supply system and adjusting the output of distributed micro-sources and energy storage units are still attractive issues. This paper focuses on the two-stage optimization strategy of the microgrid system, including CCHP and HESS. The details of the operating characteristics and mathematical models of distributed micro-sources in the system are presented. The energy storage architecture is used for mathematical modeling, and the optimization model is analyzed from the two perspectives of energy supply and demand, which explores the feasibility of improving the economic operation of the micro-energy system. The two-stage optimization model in which the first stage is to determine the optimal installation capacity of various equipment and the second stage determines the optimal operation plan of the system by obtaining the system’s capacity configuration. The simulation results show that the CCHP system can reduce the operation cost by 4.61% and 6.48% for winter and summer, respectively, also reduce fuel cost consumption by 3.01% and 3.68% for winter and summer, respectively.

References

1.
Ma
,
T.
,
Wu
,
J.
, and
Hao
,
L.
,
2017
, “
Energy Flow Modeling and Optimal Operation Analysis of the Micro Energy Grid Based on Energy Hub
,”
Energy Convers. Manage.
,
133
, pp.
292
306
.
2.
Nojavan
,
S.
,
Saberi
,
K.
, and
Zare
,
K.
,
2019
, “
Risk-Based Performance of Combined Cooling, Heating and Power (CCHP) Integrated With Renewable Energies Using Information Gap Decision Theory
,”
Appl. Therm. Eng.
,
159
, p.
113875
.
3.
Rahbari
,
H. R.
,
Arabkoohsar
,
A.
, and
Jannatabadi
,
M.
,
2021
, “
Energy, Exergy, Economic and Environmental Analyses of Air-Based High-Temperature Thermal Energy and Electricity Storage: Impacts of Off-Design Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070901
.
4.
Moghaddas-Tafreshi
,
S. M.
,
Mohseni
,
S.
,
Karami
,
M. E.
, and
Kelly
,
S.
,
2019
, “
Optimal Energy Management of a Grid-Connected Multiple Energy Carrier Micro-Grid
,”
Appl. Therm. Eng.
,
152
, pp.
796
806
.
5.
Ji
,
J.
,
Ding
,
Z.
,
Xia
,
X.
,
Wang
,
Y.
,
Huang
,
H.
,
Zhang
,
C.
,
Peng
,
T.
,
Wang
,
X.
,
Nazir
,
M.S.
,
Zhang
,
Y.
and
Liu
,
B.
,
2020
, “
System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC
,”
Complexity
.
6.
Nazir
,
M. S.
,
Abdalla
,
A. N.
,
Wang
,
Y.
,
Chu
,
Z.
,
Jie
,
J.
,
Tian
,
P.
,
Jiang
,
M.
,
Khan
,
I.
,
Sanjeevikumar
,
P.
, and
Tang
,
Y.
,
2020
, “
Optimization Configuration of Energy Storage Capacity Based on the Microgrid Reliable Output Power
,”
J. Energy Storage
,
32
, p.
101866
.
7.
Dincer
,
I.
,
2002
, “
Thermal Energy Storage Systems as a Key Technology in Energy Conservation
,”
Int. J. Energy Res.
,
26
(
7
), pp.
567
588
.
8.
Nazir
,
M. S.
,
Bilal
,
M.
,
Sohail
,
H.M.
,
Liu
,
B.
,
Chen
,
W.
, and
Iqbal
,
H.M.
,
2020
, “
Impacts of Renewable Energy Atlas: Reaping the Benefits of Renewables and Biodiversity Threats
,”
Int. J. Hydrogen Energy
.
9.
Rakipour
,
D.
, and
Barati
,
H.
,
2019
, “
Probabilistic Optimization in Operation of Energy Hub With Participation of Renewable Energy Resources and Demand Response
,”
Energy
,
173
, pp.
384
399
.
10.
Xiong
,
L.
,
Li
,
P.
,
Wang
,
Z.
, and
Wang
,
J.
,
2020
, “
Multi-Agent Based Multi Objective Renewable Energy Management for Diversified Community Power Consumers
,”
Appl. Energy
,
259
, p.
114140
.
11.
Wang
,
B.
,
Zhang
,
L.
,
Ma
,
H.
,
Wang
,
H.
, and
Wan
,
S.
,
2019
, “
Parallel LSTM-Based Regional Integrated Energy System Multienergy Source-Load Information Interactive Energy Prediction
,”
Complexity
.
12.
Rohit
,
A. K.
, and
Rangnekar
,
S.
,
2017
, “
An Overview of Energy Storage and Its Importance in Indian Renewable Energy Sector: Part II–Energy Storage Applications, Benefits and Market Potential
,”
J. Energy Storage
,
13
, pp.
447
456
.
13.
Bloemendal
,
M.
,
Olsthoorn
,
T.
, and
Boons
,
F.
,
2014
, “
How to Achieve Optimal and Sustainable Use of the Subsurface for Aquifer Thermal Energy Storage
,”
Energy Policy
,
66
, pp.
104
114
.
14.
Wang
,
Y.
,
Ai
,
X
,
Tan
,
Z.
,
Yan
,
L.
, and
Liu
,
S.
,
2015
, “
Interactive Dispatch Modes and Bidding Strategy of Multiple Virtual Power Plants Based on Demand Response and Game Theory
,”
IEEE Trans. Smart Grid
,
7
(
1
), pp.
510
519
.
15.
Zhang
,
X.
,
Takezawa
,
A.
, and
Kang
,
Z.
,
2018
, “
Topology Optimization of Piezoelectric Smart Structures for Minimum Energy Consumption Under Active Control
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
185
199
.
16.
Wang
,
Y.
,
Huang
,
Y.
,
Wang
,
Y.
,
Zeng
,
M.
,
Li
,
F.
,
Wang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Energy Management of Smart Micro-Grid With Response Loads and Distributed Generation Considering Demand Response
,”
J. Cleaner Prod.
,
197
, pp.
1069
1083
.
17.
Li
,
J.
,
Zhu
,
M.
, and
Liang
,
J.
,
2020
, “
Pattern Simulation and Analysis of Generalized Load Profile Coupling With Active Load and Renewable Energy Power
,”
Int. J. Electr. Power Energy Syst.
,
117
, p.
105611
.
18.
Arabkoohsar
,
A.
,
2020
,
Mechanical Energy Storage Technologies
,
Academic Press
,
Denmark
.
19.
Nabat
,
M. H.
,
Zeynalian
,
M.
,
Razmi
,
A. R.
,
Arabkoohsar
,
A.
, and
Soltani
,
M.
,
2020
, “
Energy, Exergy, and Economic Analyses of an Innovative Energy Storage System; Liquid Air Energy Storage (LAES) Combined With High-Temperature Thermal Energy Storage (HTES)
,”
Energy Convers. Manage.
,
226
, p.
113486
.
20.
Razmi
,
A. R.
,
Soltani
,
M.
,
Ardehali
,
A.
,
Gharali
,
K.
,
Dusseault
,
M.B.
and
Nathwani
,
J.
,
2021
, “
Design, Thermodynamic, and Wind Assessments of a Compressed Air Energy Storage Integrated With Two Adjacent Wind Farms: A Case Study at Abhar and Kahak Sites, Iran
,”
Energy
,
221
, p,
119902
.
21.
Yu
,
D.
,
Mao
,
Y.
,
Gu
,
B.
,
Nojavan
,
S.
,
Jermsittiparsert
,
K.
, and
Nasseri
,
M.
,
2020
, “
A New LQG Optimal Control Strategy Applied on a Hybrid Wind Turbine/Solid Oxide Fuel Cell/in the Presence of the Interval Uncertainties
,”
Sustainable Energy Grids Networks
,
21
, p.
100296
.
22.
Wu
,
T.
,
Shi
,
X.
,
Liao
,
L.
,
Zhou
,
C.
,
Zhou
,
H.
, and
Su
,
Y.
,
2019
, “
A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization
,”
Energies
,
12
(
4
), p.
642
.
23.
Arteconi
,
A.
,
Hewitt
,
N. J.
, and
Polonara
,
F.
,
2013
, “
Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) Systems
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
155
165
.
24.
Zhang
,
L.
,
Kuang
,
J.
,
Sun
,
B.
,
Li
,
F.
, and
Zhang
,
C.
,
2020
, “
A Two-Stage Operation Optimization Method of Integrated Energy Systems With Demand Response and Energy Storage
,”
Energy
,
208
, p.
118423
.
25.
Cao
,
B.
,
Dong
,
W.
,
Lv
,
Z.
,
Gu
,
Y.
,
Singh
,
S.
, and
Kumar
,
P.
,
2020
, “
Hybrid Microgrid Many-Objective Sizing Optimization With Fuzzy Decision
,”
IEEE Trans. Fuzzy Syst.
,
28
(
11
), pp.
2702
2710
.
26.
Lv
,
X.
,
Weng
,
Y.
,
Ding
,
X.
,
Weng
,
S.
, and
Weng
,
Y.
,
2018
, “
Technological Development of Multi-Energy Complementary System Based on Solar PVs and MGT
,”
Front. Energy
,
12
(
4
), pp.
509
517
.
27.
Sarkar
,
A.
, and
Behera
,
D. K.
,
2012
, “
Wind Turbine Blade Efficiency and Power Calculation With Electrical Analogy
,”
Int. J. Sci. Res. Publ.
,
2
(
2
), pp.
1
5
.
28.
Kumar
,
M. N.
,
Saini
,
H. S.
,
Anjaneyulu
,
K. S. R.
, and
Singh
,
K.
,
2014
, “
Solar Power Analysis Based on Light Intensity
,”
Int. J. Eng. Sci.
, pp.
01
05
.
29.
Palizban
,
O.
, and
Kauhaniemi
,
K.
,
2016
, “
Energy Storage Systems in Modern Grids—Matrix of Technologies and Applications
,”
J. Energy Storage
,
6
, pp.
248
259
.
30.
Dincer
,
I.
,
2002
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy Build.
,
34
(
4
), pp.
377
388
.
31.
Roushenas
,
R.
,
Razmi
,
A. R.
,
Soltani
,
M.
,
Torabi
,
M.
,
Dusseault
,
M. B.
, and
Nathwani
,
J.
,
2020
, “
Thermo-environmental Analysis of a Novel Cogeneration System Based on Solid Oxide Fuel Cell (SOFC) and Compressed air Energy Storage (CAES) Coupled With Turbocharger
,”
Appl. Therm. Eng.
,
181
, p.
115978
.
32.
Salehimaleh
,
M.
,
Akbarimajd
,
A.
,
Valipour
,
K.
, and
Dejamkhooy
,
A.
,
2018
, “
Generalized Modeling and Optimal Management of Energy Hub Based Electricity, Heat and Cooling Demands
,”
Energy
,
159
, pp.
669
685
.
33.
Hannan
,
M.
,
Tan
,
S. Y.
,
Al-Shetwi
,
A. Q.
,
Jern
,
K. P.
, and
Begum
,
R. A.
,
2020
, “
Optimized Controller for Renewable Energy Sources Integration Into Microgrid: Functions, Constraints and Suggestions
,”
J. Cleaner Prod.
,
256
, p.
120419
.
34.
Jun
,
Z.
,
Junfeng
,
L.
,
Jie
,
W.
, and
Ngan
,
H. W.
,
2011
, “
A Multi-Agent Solution to Energy Management in Hybrid Renewable Energy Generation System
,”
Renewable Energy
,
36
(
5
), pp.
1352
1363
.
You do not currently have access to this content.