Abstract

We investigate three formulations for computing acoustic velocity of natural gas and derive an equation for the heat capacity ratio, which plays a central role in these formulations. The first formulation is a compilation of fundamental equations available in the engineering literature, referred to as the DASH formulation. The second formulation is a development from the first, in which we use the derived equation for the heat capacity ratio (modified DASH). The third formulation is a mainstream method implemented in Geoscience (BW formulation). All three formulations stem from virial Equations of State that take preponderance in the exploration stage, when the detailed fluid composition is unknown and compositional methods are frequently inapplicable. We test the formulations on an extensive experimental data set of acoustic velocity of natural gases and compare the resulting accuracies. Both DASH and modified DASH formulations provide significantly higher accuracy when compared to the BW formulation. Additionally, the modified DASH, as we derive in this work, has the highest accuracy at pressures above 7000 psi, a condition typically encountered in the Brazilian pre-salt reservoirs. In a final step, we investigate how these different formulations and corresponding accuracies in velocity computation may affect seismic modeling, using a single interface model between a dense gas reservoir and a sealing rock. A direct comparison of amplitude versus offset modeling using our modified DASH formulation and the BW formulation shows up to 50% difference in amplitude calculation in a sensitivity exercise, especially at the longer offsets and higher pressures.

References

1.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
. 10.1021/i160057a011
2.
Soave
,
G.
,
1972
, “
Equilibrium Constants From a Modified Redlich-Kwong Equation of State
,”
Chem. Eng. Sci.
,
27
(
6
), pp.
1197
1203
. 10.1016/0009-2509(72)80096-4
3.
Batzle
,
M.
, and
Wang
,
Z.
,
1992
, “
Seismic Properties of Pore Fluids
,”
Geophysics
,
57
(
11
), pp.
1396
1408
. 10.1190/1.1443207
4.
Thomas
,
L. K.
,
Hankinson
,
R. W.
, and
Phillips
,
K. A.
,
Jul. 1970
, “
Determination of Acoustic Velocities for Natural Gas
,”
J. Pet. Technol.
,
22
(
7
), pp.
889
895
. 10.2118/2579-PA
5.
Sutton
,
R. P.
, and
Hamman
,
J. G.
,
2009
, “
Accuracy of Fluid Property Estimates for Calculating Seismic Properties
,”
Proceedings—SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
October
, pp.
3999
4036
.
6.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2018
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg
.
7.
Carvalho
,
R. R.
, and
Moraes
,
F. S.
,
2018
, “
Evaluation of an Alternative Formulation for Computing Seismic Properties of Hydrocarbon Fluids
,”
80th EAGE Conference. Exhibition 2018 Oppornuties Presented by Energy Transit
,
Copenhagen, Denmark
,
June
, pp.
1
5
.
8.
Hamdi
,
H.
,
Amini
,
H.
,
Corbett
,
P. W. M.
,
MacBeth
,
C.
, and
Jamiolahmady
,
M.
,
2011
, “
Application of Compositional Simulation in Seismic Modeling and Numerical Well Testing for Gas Condensate Reservoirs
,”
73rd EAGE Conference and Exhibition
,
Vienna, Austra
,
May
, pp.
23
26
.
9.
Dranchuk
,
P. M.
, and
Abou-Kassem
,
J. H.
,
1975
, “
Calculation of Z Factors for Natural Gases Using Equations of State
,”
J. Can. Pet. Technol.
,
14
(
3
), pp.
34
36
. 10.2118/75-03-03
10.
Ahmadi
,
P.
,
Chapoy
,
A.
, and
Tohidi
,
B.
,
2017
, “
Density, Speed of Sound and Derived Thermodynamic Properties of a Synthetic Natural gas
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
249
266
. 10.1016/j.jngse.2017.02.009
11.
Plantier
,
F.
,
Danesh
,
A.
,
Sohrabi
,
M.
,
Daridon
,
J. L.
,
Gozalpour
,
F.
, and
Todd
,
A. C.
,
2005
, “
Measurements of the Speed of Sound for Mixtures of Methane + Butane With a Particular Focus on the Critical State
,”
J. Chem. Eng. Data
,
50
(
2
), pp.
673
676
. 10.1021/je049622g
12.
Younglove
,
B. A.
,
Frederick
,
N. V.
, and
McCarty
,
R.
,
1993
,
Speed of Sound Data and Related Models for Mixtures of Natural Gas Constituents, NIST Monographs
,
National Institute of Standards and Technology
,
Boulder, CO
.
13.
Dranchuk
,
P. M.
,
Purvis
,
R. A.
, and
Robinson
,
D. B.
,
1973
, “
Computer Calculation of Natural Gas Compressibility Factors Using The Standing And Katz Correlation
,”
Annual Technical Meeting
,
Edmonton
,
May
, pp.
2
17
.
14.
Benedict
,
M.
,
Webb
,
G. B.
, and
Rubin
,
L. C.
,
1940
, “
An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures. I. Methane, Ethane, Propane and n-Butane
,”
J. Chem. Phys.
,
8
(
4
), pp.
334
345
. 10.1063/1.1750658
15.
Carvalho
,
R.
, and
Moraes
,
F.
,
2019
, “
An Application of Bayesian Inversion for Predicting Non-Hydrocarbon Mole Fractions in a Natural Gas Mixture
,”
81st EAGE Conference and Exhibition
,
London, UK
,
June
, pp.
1
5
.
16.
Van der Waals
,
J. D.
,
1913
, “
The Law of Corresponding States for Different Substances
,”
KNAW, Proceedings
,
Amsterdam, The Netherlands
.
17.
Beattie
,
J. A.
, and
Bridgeman
,
O. C.
,
Jul. 1927
, “
A New Equation of State for Fluids. I. Application to Gaseous Ethyl Ether and Carbon Dioxide 1
,”
J. Am. Chem. Soc.
,
49
(
7
), pp.
1665
1667
. 10.1021/ja01406a005
18.
Standing
,
M. B.
, and
Katz
,
D. L.
,
1942
, “
Density of Natural Gases
,”
Trans. AIME
,
146
(
1
), pp.
140
149
. 10.2118/942140-G
19.
Poettmann
,
F. H.
, and
Carpenter
,
P. G.
,
1952
, “
The Multiphase Flow of Gas, Oil, and Water Through Vertical Flow Strings With Application to the Design of Gas-Lift Installations
,”
Drill. Prod. Pract.
,
1952
, pp.
257
317
.
20.
Abou-Kassem
,
J. H.
, and
Dranchuk
,
P. M.
,
1982
, “
Isobaric Heat Capacities of Natural Gases at Elevated Pressures and Temperatures
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
September
, pp.
1
12
.
21.
Starling
,
K. E.
,
1973
,
Fluid Thermodynamic Properties for Light Petroleum Systems
,
Gulf Publishing Company
,
Houston, TX
.
22.
Takacs
,
G.
,
1976
, “
Comparisons Made for Computer Z-Factor Calculations
,”
Oil Gas J.
,
74
(
51
), pp.
64
66
.
23.
Takacs
,
G.
,
1989
, “
Comparing Methods for Calculating Z-Factor Comparing Methods for Calculating Z-Factor
,”
Oil & Gas J.
,
8
, pp.
43
46
.
24.
Almeida
,
A. R.
,
2011
, “
A Model to Calculate the Theoretical Critical Flow Rate Through Venturi Gas Lift Valves
,”
SPE J.
,
16
(
1
), pp.
134
147
. 10.2118/126184-PA
25.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
,
2009
,
The Rock Physics Handbook
,
Cambridge University Press
,
Cambridge
.
26.
Abou-Kassem
,
J. H.
,
Mattar
,
L.
, and
Dranchuk
,
P. M.
,
1990
, “
Computer Calculations of Compressibility of Natural Gas
,”
J. Can. Pet. Technol.
,
29
(
5
), pp.
105
108
. https://doi.org/10.2118/90-05-10
27.
Dranchuk
,
P. M.
, and
Abou-Kassem
,
J. H.
,
1992
, “
Computer Calculation of Heat Capacity of Natural Gases Over a Wide Range of Pressure and Temperature
,”
Can. J. Chem. Eng.
,
70
(
2
), pp.
350
355
. 10.1002/cjce.5450700220
28.
Olatunji
,
A.
,
2010
,
Optimization of Natural Gas Field Development Using Artificial Neural Networks
,
The Pennsylvania State University
,
Pennsylvania
29.
Sledjeski
,
E. W.
,
1951
, “
Isobaric Heat Capacity of Methane
,”
Ind. Eng. Chem.
,
43
(
12
), pp.
2913
2915
. 10.1021/ie50504a068
30.
Wichert
,
E.
, and
Aziz
,
K.
,
1972
, “
Calculate Zs for Sour Gases
,”
Hydrocarb. Process.
,
51
(
5
), p.
119
.
31.
Costa Gomes
,
M. F.
, and
Trusler
,
J. P. M.
,
Sep. 1998
, “
The Speed of Sound in Two Methane-Rich gas Mixtures at Temperatures Between 250 K and 350 K and at Pressures up to 20 MPa
,”
J. Chem. Thermodyn.
,
30
(
9
), pp.
1121
1129
. 10.1006/jcht.1998.0378
32.
Trusler
,
J. P. M.
,
1994
, “
The Speed of Sound in [0.8CH4 + 0.2C2H6][g] at Temperatures Between 200 K and 375 K.pdf
,”
J. Chem. Thermodyn.
,
26
(
7
), pp.
751
763
. https://doi.org/10.1006/jcht.1994.1089
33.
Trusler
,
J. P. M.
, and
Zarari
,
M.
,
1992
, “
The Speed of Sound and Derived Thermodynamic Properties of Methane at Temperatures Between 275 K and 375 K and Pressures up to 10 MPa
,”
J. Chem. Thermodyn.
,
24
(
9
), pp.
973
991
. 10.1016/S0021-9614(05)80008-4
34.
Labes
,
P.
,
Daridon
,
J. L.
,
Lagourette
,
B.
, and
Saint-Guirons
,
H.
,
1994
, “
Measurement and Prediction of Ultrasonic Speed Under High Pressure in Natural Gases
,”
Int. J. Thermophys.
,
15
(
5
), pp.
803
819
. 10.1007/BF01447096
35.
Ewing
,
M. B.
, and
Goodwin
,
A. R. H.
,
1992
, “
Speeds of Sound, Perfect-Gas Heat Capacities, and Acoustic Virial Coefficients for Methane Determined Using a Spherical Resonator at Temperatures Between 255 K and 300 K and Pressures in the Range 171 kPa to 7.1 MPa
,”
J. Chem. Thermodyn.
,
24
(
12
), pp.
1257
1274
. 10.1016/S0021-9614(05)80266-6
36.
Ligero
,
E. L.
, and
Schiozer
,
D. J.
,
2014
, “
Miscible WAG-CO2 Light oil Recovery From Low Temperature and High Pressure Heterogeneous Reservoir
,”
SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings
,
Maracaibo, Venezuela
,
May
, pp.
526
538
.
37.
Formigli
,
J.
,
Capeleiro Pinto
,
A.
, and
Almeida
,
A.
,
2009
, “
Santos Basin’s Pre-Salt Reservoirs Development—The Way Ahead
,”
Offshore Technological Conference
,
Houston, TX
,
May
, pp.
4
7
.
38.
Gassmann
,
F.
,
2007
, “3p. On Elasticity of Porous Media by F. Gassmann, Zürich, 1951,”
Classics of Elastic Wave Theory
,
H.
Hoeber
,
N.
van de Coevering
,
I. F.
Jones
, and
M.
Pelissier
, eds.,
Society of Exploration Geophysicists
,
Tulsa, OK
, pp.
389
408
.
39.
Zoeppritz
,
K.
,
2007
, “3n. On the Reflection and Transmission of Seismic Waves at Surfaces of Discontinuity,”
Classics of Elastic Wave Theory
,
H.
Hoeber
,
N.
van de Coevering
,
I. F.
Jones
, and
M.
Pelissier
, eds.,
Society of Exploration Geophysicists
,
Tulsa, OK
, pp.
363
376
.
You do not currently have access to this content.