Abstract

Two simultaneous strategies were used to reduce diesel engine emissions. Optimized manifold designs were used with gas-to-liquid (GTL) fuel and its blend with diesel fuel. Six new spiral-helical manifolds were tested, which could be divided into two groups. The first group is with the same inner diameter (2.6 cm) and outlet angle (30 deg), but the different number of spiral turns (1t, 2t, etc.). The second group is with different inner diameters. The results showed that the highest pressure and heat release were achieved by m(2.6,30,1t) with the diesel–GTL blend. In addition, the heat release rate decreases with the increase in the number of turns. The same combination also reduced the pressure rise rate (dP/dθ) by about 24% compared to the normal manifold. For the emissions, the maximum reduction in CO emissions was achieved by using m(2.6,30,3t) and GTL with about 34%. In addition, the maximum hydrocarbon (HC) reduction was achieved by m(2.1,30,3t) and GTL, which is about 99% lower than that of the normal manifold. NO emissions were reduced by about 25% when m(2.6,30,4t) and GTL are used. The total particulate matters (PM) were the lowest for m(2.6,30,1t) and normal manifold in the case of diesel. Generally, it was found that the combination of m(2.6,30,1t) with GTL and its blend gave the optimum performance and low emissions among all manifolds.

References

References
1.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
January 2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol
,
142
(
1
), p.
012201
. 10.1115/1.4044058
2.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
March 2017
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol
,
139
(
2
), p.
022204
. 10.1115/1.4034288
3.
Hoseini
,
S. S.
,
Najafi
,
G.
,
Ghobadiana
,
B.
,
Mamatb
,
R.
,
Sidik
,
N. A. C.
, and
Azmi
,
W. H.
,
2017
, “
The Effect of Combustion Management on Diesel Engine Emissions Fuelled With Biodiesel-Diesel Blends
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
307
331
. 10.1016/j.rser.2017.01.088
4.
Hountalas
,
D. T
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
,
2008
, “
Effect of Exhaust Gas Recirculation (EGR) Temperature for Various EGR Rates on Heavy Duty DI Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
. 10.1016/j.energy.2007.07.002
5.
Verschaeren
,
R.
,
Schaepdryver
,
W.
,
Serruys
,
T.
,
Bastiaen
,
M.
,
Vervaeke
,
L.
, and
Verhelst
,
S.
,
2014
, “
Experimental Study of NO x Reduction on a Medium Speed Heavy Duty Diesel Engine by the Application of EGR (Exhaust gas Recirculation) and Miller Timing
,”
Energy
,
76
, pp.
614
621
. 10.1016/j.energy.2014.08.059
6.
Abdelaal
,
M.
, and
Hegab
,
A.
,
2012
, “
Combustion and Emission Characteristics of a Natural Gas fueled Diesel Engine With EGR
,”
Energy Convers. Manage.
,
64
, pp.
301
312
. 10.1016/j.enconman.2012.05.021
7.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
Singapore
.
8.
Turkyilmazoglu
,
M.
,
2020
, “
Combustion of a Solid Fuel Material at Motion
,”
Energy
,
203
, p.
117837
. 10.1016/j.energy.2020.117837
9.
Rozsas
,
T.
, and
Brandstetter
,
W.
,
1988
, “
Optimization of the Charge Process in Modern Motor Vehicle Spark Ignition Engines
,”
SAE Paper No: 885058.
10.
Margary
,
R.
,
Nino
,
E.
, and
Vafidis
,
C.
,
1990
, “
The Effect of Intake Duct Length on the In-cylinder Air Motion in a Motored Diesel Engine
,”
SAE Paper No. 900057.
11.
Reddy
,
P. R.
,
Rajulu
,
K. G.
, and
Naidu
,
T. V. S.
,
2014
, “
Experimental Investigation on Diesel Engines by Swirl Induction With Different Manifolds
,”
Int. J. Curr. Eng. Sci. Res.
,
2
(
2
), pp.
488
492
. 10.14741/ijcet/spl.2.2014.91
12.
Ceviz
,
M. A.
,
2007
, “
Intake Plenum Volume and Its Influence on the Engine Performance, Cyclic Variability and Emissions
,”
Energy Convers Manage
,
48
(
3
), pp.
961
966
. 10.1016/j.enconman.2006.08.006
13.
Othman
,
M. F.
,
Adam
,
A.
,
Najafi
,
G.
, and
Mamat
,
R.
,
2017
, “
Green Fuel as Alternative Fuel for Diesel Engine: A Review
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
694
709
. 10.1016/j.rser.2017.05.140
14.
Li
,
X.
,
Zhou
,
H.
,
Zhao
,
L. M.
,
Su
,
L.
,
Xu
,
H.
, and
Liu
,
F.
,
2016
, “
Effect of Split Injections Coupled With Swirl on Combustion Performance in DI Diesel Engines
,”
Energy Convers. Manage.
,
129
, pp.
180
188
. 10.1016/j.enconman.2016.09.011
15.
Su
,
L. W.
,
Li
,
X. R.
,
Zhang
,
Z.
, and
Liu
,
F. S.
,
2014
, “
Numerical Analysis on the Combustion and Emission Characteristics of Forced Swirl Combustion System for DI Diesel Engines
,”
Energy Convers. Manage.
,
86
, pp.
20
27
. 10.1016/j.enconman.2014.05.023
16.
Li
,
X.
,
Gao
,
H.
,
Zhao
,
L.
,
Zhang
,
Z.
,
He
,
X.
, and
Liu
,
F.
,
2016
, “
Combustion and Emission Performance of a Split Injection Diesel Engine in a Double Swirl Combustion System
,”
Energy
,
114
, pp.
1135
1146
. 10.1016/j.energy.2016.08.092
17.
Li
,
X. R.
,
Zhou
,
H.
, and
Su
,
L.
,
Chen
,
Y.
,
Qiao
,
Z.
, and
Liu
,
F. S.
,
2016
, “
Combustion and Emission Characteristics of Lateral Swirl Combustion System for DI Diesel Engines Under Low Excess Air Ratio Conditions
,”
Fuel
,
184
, pp.
672
680
. 10.1016/j.fuel.2016.07.071
18.
Shang
,
Y.
,
Liu
,
F. S.
, and
Li
,
X. R.
,
2011
, “
Forced Swirl Combustion Chamber in Diesel Engine: Numerical Simulation and Experimental Research
,”
Environ. Eng. Manage. J.
,
10
(
7
), pp.
925
930
. 10.30638/eemj.2011.131
19.
Jafarmadar
,
S.
,
Taghavifar
,
H.
,
Taghavifar
,
H.
, and
Navid
,
A.
,
2016
, “
Numerical Assessment of Flow Dynamics for Various DI Diesel Engine Designs Considering Swirl Number and Uniformity Index
,”
Energy Convers. Manage.
,
110
, pp.
347
355
. 10.1016/j.enconman.2015.12.035
20.
Wei
,
S.
,
Ji
,
K.
,
Leng
,
X.
,
Wang
,
F.
, and
Liu
,
X.
,
2014
, “
Numerical Simulation on Effects of Spray Angle in a Swirl Chamber Combustion System of DI (Direct Injection) Diesel Engines
,”
Energy
,
75
, pp.
289
294
. 10.1016/j.energy.2014.07.076
21.
Prasad
,
B. V. V. S. U.
,
Sharma
,
C. S.
,
Anand
,
T. N. C.
, and
Ravikrishna
,
R. V.
,
2011
, “
High Swirl—Inducing Piston Bowls in Small Diesel Engines for Emission Reduction
,”
Appl. Energy
,
88
(
7
), pp.
2355
2367
. 10.1016/j.apenergy.2010.12.068
22.
Abo-Elfadl
,
S.
, and
Abd El-Sabor Mohamed
,
A.
,
2017
, “
The Effect of the Helical Inlet Port Design and the Shrouded Inlet Valve Condition on Swirl Generation in Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032203
. 10.1115/1.4037941
23.
Chen
,
A.
, and
Veshagh
,
A.
, “
Intake Flow Prediction of a Transparent DI Diesel Engine
,”
SAE Paper No. 981020
.
E-ISSN 2277–4106
.
24.
Valentino
,
G.
,
Duane
,
K.
, and
Patrick
,
F.
, “
Intake Valve Flow Measurements Using PIV
,”
SAE Paper No. 932700.1993.
25.
Lee
,
J.
, and
Farrell
,
P. V.
,
1993
, “
Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry
,”
SAE Paper No. 930480.
26.
Nadarajah
,
S.
,
Balabani
,
S.
,
Tindal
,
M. J.
, and
Yianneskis
,
M.
,
1998
, “
The Effect of Swirl on the Annular Flow Past an Axisymmetric Poppet Valve
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
212
(
6
), pp.
473
484
. 10.1243/0954406981521376
27.
Martins
,
J.
,
Teixeira
,
S.
, and
Coene
,
S.
, “
Design of an Inlet Track of a Small IC Engine for Swirl Enhancement
,”
Proceedings of 20th International Congress of Mechanical Engineering
,
Gramado, RS, Brazil
,
Nov. 15–20
.
28.
Paul
,
B.
, and
Ganesan
,
V.
,
2010
, “
Flow Field Development in a Direct Injection Diesel Engine With Different Manifolds
,”
Int. J. Eng. Sci.
,
2
(
1
), pp.
80
91
. 10.4314/ijest.v2i1.59089
29.
Nikulin
,
V.
,
Savtchenko
,
S.
, and
Ashgriz
,
N.
,
2017
, “
A Model for the Turbulent Suppression in Swirling Flows
,”
Phys. Lett. A
,
381
(
48
), pp.
3989
3995
. 10.1016/j.physleta.2017.10.028
30.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a DI Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122202
. 10.1115/1.4041543
31.
Sadeq
,
A. M.
,
Bassiony
,
M. A.
,
Elbashir
,
A. M.
,
Ahmed
,
S. F.
, and
Khraisheh
,
M.
,
2019
, “
Combustion and Emissions of a Diesel Engine Utilizing Novel Intake Manifold Designs and Running on Alternative Fuels
,”
Fuel
,
255
.
Article 115769
. 10.1016/j.fuel.2019.115769
32.
Asokan
,
M. A.
,
Senthur prabu
,
S.
,
Kamesh
,
S.
, and
Khan
,
W.
,
2018
, “
Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled With Papaya and Watermelon Seed Oil Bio-diesel/Diesel Blends
,”
Energy
,
145
, pp.
238
245
. 10.1016/j.energy.2017.12.140
33.
Zhang
,
Z.
,
Jiaqiang
,
E.
,
Deng
,
Y.
,
Pham
,
M. H.
,
Zuo
,
W.
,
Peng
,
Q.
, and
Yin
,
Z.
,
2018
, “
Effects of Fatty Acid Methyl Esters Proportion on Combustion and Emission Characteristics of a Biodiesel Fueled Marine Diesel Engine
,”
Energy Convers. Manage.
,
159
, pp.
244
253
. 10.1016/j.enconman.2017.12.098
34.
Li
,
B.
,
Li
,
Y.
,
Liu
,
H.
,
Liu
,
F.
,
Wang
,
Z.
, and
Wang
,
J.
,
2017
, “
Combustion and Emission Characteristics of Diesel Engine Fueled With Biodiesel/PODE Blends
,”
Appl. Energy
,
206
, pp.
425
431
. 10.1016/j.apenergy.2017.08.206
35.
Dong
,
S.
,
Yang
,
C.
,
Ou
,
B.
,
Lu
,
H.
, and
Cheng
,
X.
,
2018
, “
Experimental Investigation on the Effects of Nozzle-Hole Number on Combustion and Emission Characteristics of Ethanol/Diesel Dual-Fuel Engine
,”
Fuel
,
217
, pp.
1
10
. 10.1016/j.fuel.2017.12.024
36.
Lee
,
J.
,
Lee
,
S.
, and
Lee
,
S.
,
2018
, “
Experimental Investigation on the Performance and Emissions Characteristics of Ethanol/Diesel Dual-Fuel Combustion
,”
Fuel
,
220
, pp.
72
79
. 10.1016/j.fuel.2018.02.002
37.
Talibi
,
M.
,
Hellier
,
P.
, and
Ladommatos
,
N.
,
2018
, “
Impact of Increasing Methyl Branches in Aromatic Hydrocarbons on Diesel Engine Combustion and Emissions
,”
Fuel
,
216
, pp.
579
588
. 10.1016/j.fuel.2017.12.045
38.
Das
,
M.
,
Sarkar
,
M.
,
Datta
,
A.
, and
Santra
,
A. K.
,
2018
, “
An Experimental Study on the Combustion, Performance and Emission Characteristics of a Diesel Engine Fuelled With Diesel-Castor Oil Biodiesel Blends
,”
Renewable Energy
,
119
, pp.
174
184
. 10.1016/j.renene.2017.12.014
39.
Emiroğlu
,
O.
, and
Şen
,
M.
,
2018
, “
Combustion, Performance and Emission Characteristics of Various Alcohol Blends in a Single Cylinder Diesel Engine
,”
Fuel
,
212
, pp.
34
40
. 10.1016/j.fuel.2017.10.016
40.
Emiroğlu
,
O.
, and
Mehmet
,
Ş.
,
2018
, “
Combustion, Performance and Exhaust Emission Characterizations of a Diesel Engine Operating With a Ternary Blend (Alcohol-Biodiesel-Diesel Fuel)
,”
Appl. Therm. Eng.
,
133
, pp.
371
380
. 10.1016/j.applthermaleng.2018.01.069
41.
Wei
,
M.
,
Li
,
S.
,
Xiao
,
H.
, and
Guo
,
G.
,
2017
, “
Combustion Performance and Pollutant Emissions Analysis Using Diesel/Gasoline/Iso-butanol Blends in a Diesel Engine
,”
Energy Convers. Manage.
,
149
, pp.
381
391
. 10.1016/j.enconman.2017.07.038
42.
Choi
,
K.
,
Park
,
S.
,
Roh
,
H. G.
, and
Lee
,
C. S.
,
2019
, “
Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine
,”
Energies
,
12
(
11
), p.
2201
. 10.3390/en12112201
43.
Samim
,
S.
,
Sadeq
,
A. M.
, and
Ahmed
,
S. F.
,
2016
, “
Measurements of Laminar Flame Speeds of GTL-Diesel Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052213
. 10.1115/1.4033627
44.
Sadeq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
. 10.1115/1.4046460
45.
Jia-dong
,
J. I.
,
Pei-qi
,
G. E.
, and
Wen-bo
,
B. I.
,
2016
, “
Numerical Investigation of Flow and Heat Transfer Performances of Horizontal Spiral-Coil Pipes
,”
J. Hydrodyn. Ser. B
,
28
(
4
), pp.
576
584
. 10.1016/s1001-6058(16)60661-3
46.
Sadeq
,
A. M.
,
Ahmed
,
S. F.
, and
Sleiti
,
A. K.
,
2021
, “
Transient 3D Simulations of Turbulent Premixed Flames of Gas-to-Liquid (GTL) Fuel in a Fan-Stirred Combustion Vessel
,”
Fuel
,
291
, p.
120184
. 10.1016/j.fuel.2021.120184
47.
Ceviz
,
M. A.
, and
Akın
,
M.
,
2010
, “
Design of a New SI Engine Intake Manifold With Variable Length Plenum
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2239
2244
. 10.1016/j.enconman.2010.03.018
48.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2015
, “
Effects of Iso-butanol/Diesel and n-Pentanol/Diesel Blends on Performance and Emissions of a DI Diesel Engine Under Premixed LTC (Low Temperature Combustion) Mode
,”
Fuel
,
170
, pp.
49
59
. 10.1016/j.fuel.2015.12.029
49.
Huang
,
H.
,
Zhou
,
C.
,
Liu
,
Q.
,
Wang
,
Q.
, and
Wang
,
X.
,
2016
, “
An Experimental Study on the Combustion and Emission Characteristics of a Diesel Engine Under Low Temperature Combustion of Diesel-Gasoline-n-Butanol Blends
,”
Appl. Energy
,
170
(
15
), pp.
219
231
. 10.1016/j.apenergy.2016.02.126
50.
Selim
,
M. Y. E.
,
2009
, “
Reducing the Viscosity of Jojoba Methyl Ester Diesel Fuel and Effects on Diesel Engine Performance and Roughness
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1781
1788
. 10.1016/j.enconman.2009.03.012
51.
Selim
,
M. Y. E.
,
2005
, “
Effect of Engine Parameters and Gaseous Fuel Type on the Cyclic Variability of Dual Fuel Engines
,”
Fuel
,
84
(
7–8
), pp.
961
971
. 10.1016/j.fuel.2004.11.023
52.
García-Contreras
,
R.
,
Armas
,
O.
,
Mata
,
C.
, and
Villanueva
,
O.
,
2017
, “
Impact of Gas To Liquid and Diesel Fuels on the Engine Cold Start
,”
Fuel
,
203
, pp.
298
307
. 10.1016/j.fuel.2017.04.116
53.
Abu-Jrai
,
A.
,
Rodríguez-Fernández
,
J.
,
Tsolakis
,
A.
,
Megaritis
,
A.
,
Theinnoi
,
K.
,
Cracknell
,
R. F.
, and
Clark
,
R. H.
,
2009
, “
Performance, Combustion and Emissions of a Diesel Engine Operated With Reformed EGR. Comparison of Diesel and GTL Fueling
,”
Fuel
,
88
(
6
), pp.
1031
1041
. 10.1016/j.fuel.2008.12.001
54.
Li
,
X.
,
Qiao
,
Z.
,
Su
,
L.
,
Li
,
X.
, and
Liu
,
F.
,
2017
, “
The Combustion and Emission Characteristics of a Multi-swirl Combustion System in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
115
, pp.
1203
1212
. 10.1016/j.applthermaleng.2016.10.028
55.
Atul
,
D.
, and
Agarwal
,
A. K.
,
2014
, “
Performance, Emissions and Combustion Characteristics of Karanja Biodiesel in a Transportation Engine
,”
Fuel
,
119
, pp.
70
80
. 10.1016/j.fuel.2013.11.002
You do not currently have access to this content.