Abstract

This investigation identified conditions at which corn straw ash melts and examined how this phenomenon affects the combustion of char residues. Corn straw was pelletized in cylinders and was burned at elevated temperatures in the range of 1200–1400 °C, and at different air flow velocities. The pellets were inserted in a preheated furnace, where they were subjected to moderately high heating rates. Their combustion behavior was observed with cinematography, thermometry, and thermogravimetry. Upon insertion in the furnace, the pellets devolatilized and formed volatile envelope flames, upon extinction of which, the chars experienced concurrent heterogeneous combustion and ash fusion. Residues were assessed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), coupled to energy dispersive spectroscopy (EDS). The burnout times of the volatiles and the chars decreased drastically with increasing temperature. At 1300 °C and 1400 °C, the remaining ash underwent complete melting and the final structures of the pellets collapsed to molten pools. At 1400 °C, all of the chlorine and most of the potassium were released into the gas phase. The straw ash was identified as a high-density silicate melt. Although surface ash melted completely, it flowed to the base of the pellet. Therefore, it did not significantly hinder the oxidation of the carbonaceous char. Hence, to increase the likelihood of complete corn straw carbon burnout and of ash melting and flowing to the bottom of the furnace, operating temperatures higher than 1300 °C, in conjunction with mild air flow rates, are recommended.

References

1.
Meng
,
X.
,
Sun
,
R.
,
Zhou
,
W.
,
Liu
,
X.
,
Yan
,
Y.
, and
Ren
,
X.
,
2018
, “
Effects of Corn Ratio With Pine on Biomass Co-Combustion Characteristics in a Fixed Bed
,”
Appl. Therm. Eng.
,
142
, pp.
30
42
. 10.1016/j.applthermaleng.2018.06.068
2.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
. 10.1016/j.fuel.2016.10.017
3.
Mousa
,
E.
,
Wang
,
C.
,
Riesbeck
,
J.
, and
Larsson
,
M.
,
2016
, “
Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
1247
1266
. 10.1016/j.rser.2016.07.061
4.
Wang
,
X.
,
Panahi
,
A.
,
Qi
,
H.
,
Zhai
,
M.
,
Dong
,
P.
, and
Levendis
,
Y. A.
,
2020
, “
Product Compositions From Sequential Biomass Pyrolysis and Gasification of Its Char Residue
,”
J. Energy Eng.
,
146
(
5
), p.
04020049
. 10.1061/(ASCE)EY.1943-7897.0000695
5.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
6.
Sun
,
J.
,
Peng
,
H.
,
Chen
,
J.
,
Wang
,
X.
,
Wei
,
M.
,
Li
,
W.
,
Yang
,
L.
,
Zhang
,
Q.
,
Wang
,
W.
, and
Mellouki
,
A.
,
2016
, “
An Estimation of CO2 Emission via Agricultural Crop Residue Open Field Burning in China From 1996 to 2013
,”
J. Cleaner Prod.
,
112
, pp.
2625
2631
. 10.1016/j.jclepro.2015.09.112
7.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
. 10.1115/1.4038313
8.
Sirumalla
,
S. K.
,
Panahi
,
A.
,
Purohit
,
A.
,
Baugher
,
A.
,
Levendis
,
Y. A.
, and
West
,
R. H.
,
2018
, “
Nitrogen Oxide Evolution in Oxy-Coal Combustion
,”
US Eastern States Section of the Combustion Institute
,
State College, PA
.
9.
Panahi
,
A.
,
Sirumalla
,
S. K.
,
West
,
R. H.
, and
Levendis
,
Y. A.
,
2019
, “
Temperature and Oxygen Partial Pressure Dependencies of the Coal-Bound Nitrogen to NOx Conversion in O2/CO2 Environments
,”
Combust. Flame
,
206
, pp.
98
111
. 10.1016/j.combustflame.2019.04.015
10.
Meng
,
X.
,
Zhou
,
W.
,
Rokni
,
E.
,
Zhao
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Air Flowrate on the Combustion and Emissions of Blended Corn Straw and Pinewood Wastes
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042205
. 10.1115/1.4042005
11.
Levendis
,
Y. A.
,
Panahi
,
A.
,
Rokni
,
E.
, and
Ren
,
X.
,
2015
, “
Emissions From Cofiring Coals
,”
40th International Technical Conference on Clean Coal & Fuel Systems
,
Clearwater, FL
, pp.
533
544
.
12.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
. 10.1115/1.4032239
13.
Kaliyan
,
N.
, and
Morey
,
R. V.
,
2009
, “
Densification Characteristics of Corn Stover and Switchgrass
,”
Trans. ASABE
,
52
(
3
), pp.
907
920
. 10.13031/2013.27380
14.
Sun
,
M.
,
Yang
,
Y.
, and
Zhang
,
M.
,
2019
, “
A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102205
. https://doi.org/10.1115/1.4043634
15.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Combustion of Single Biomass Particles in Air and in Oxy-Fuel Conditions
,”
Biomass Bioenergy
,
64
, pp.
162
174
. 10.1016/j.biombioe.2014.03.018
16.
Wang
,
X.
,
Zhai
,
M.
,
Wang
,
Z.
,
Dong
,
P.
,
Lv
,
W.
, and
Liu
,
R.
,
2018
, “
Carbonization and Combustion Characteristics of Palm Fiber
,”
Fuel
,
227
, pp.
21
26
. 10.1016/j.fuel.2018.04.088
17.
Mason
,
P. E.
,
Jones
,
J. M.
,
Darvell
,
L. I.
, and
Williams
,
A.
,
2017
, “
Gas Phase Potassium Release From a Single Particle of Biomass During High Temperature Combustion
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2207
2215
. 10.1016/j.proci.2016.06.020
18.
Hupa
,
M.
,
Karlström
,
O.
, and
Vainio
,
E.
,
2017
, “
Biomass Combustion Technology Development–It is All About Chemical Details
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
113
134
. 10.1016/j.proci.2016.06.152
19.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
). 10.1115/1.4025286
20.
Vassilev
,
S. V.
,
Baxter
,
D.
, and
Vassileva
,
C. G.
,
2014
, “
An Overview of the Behaviour of Biomass During Combustion: Part II. Ash Fusion and Ash Formation Mechanisms of Biomass Types
,”
Fuel
,
117
, pp.
152
183
. 10.1016/j.fuel.2013.09.024
21.
Mlonka-Mędrala
,
A.
,
Magdziarz
,
A.
,
Gajek
,
M.
,
Nowińska
,
K.
, and
Nowak
,
W.
,
2020
, “
Alkali Metals Association in Biomass and Their Impact on Ash Melting Behaviour
,”
Fuel
,
261
, p.
116421
. 10.1016/j.fuel.2019.116421
22.
Dunnu
,
G.
,
Maier
,
J.
, and
Scheffknecht
,
G.
,
2010
, “
Ash Fusibility and Compositional Data of Solid Recovered Fuels
,”
Fuel
,
89
(
7
), pp.
1534
1540
. 10.1016/j.fuel.2009.09.008
23.
Birley
,
R.
,
Jones
,
J.
,
Darvell
,
L.
,
Williams
,
A.
,
Waldron
,
D.
,
Levendis
,
Y.
,
Rokni
,
E.
, and
Panahi
,
A.
,
2019
, “
Fuel Flexible Power Stations: Utilisation of Ash Co-Products as Additives for NOx Emissions Control
,”
Fuel
,
251
, pp.
800
807
. 10.1016/j.fuel.2019.04.002
24.
Visser
,
H.
,
van Lith
,
S. C.
, and
Kiel
,
J.
,
2008
, “
Biomass Ash-Bed Material Interactions Leading to Agglomeration in FBC
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
011801
. 10.1115/1.2824247
25.
Vassilev
,
S. V.
,
Baxter
,
D.
,
Andersen
,
L. K.
, and
Vassileva
,
C. G.
,
2013
, “
An Overview of the Composition and Application of Biomass Ash: Part 2. Potential Utilisation, Technological and Ecological Advantages and Challenges
,”
Fuel
,
105
, pp.
19
39
. 10.1016/j.fuel.2012.10.001
26.
Dirbeba
,
M. J.
,
Brink
,
A.
,
Zevenhoven
,
M.
,
DeMartini
,
N.
,
Lindberg
,
D.
,
Hupa
,
L.
, and
Hupa
,
M.
,
2019
, “
Characterization of Vinasse for Thermochemical Conversion—Fuel Fractionation, Release of Inorganics, and Ash-Melting Behavior
,”
Energy Fuels
,
33
(
7
), pp.
5840
5848
. 10.1021/acs.energyfuels.8b04177
27.
Wang
,
Q.
,
Han
,
K.
,
Gao
,
J.
,
Wang
,
J.
, and
Lu
,
C.
,
2017
, “
Investigation of Maize Straw Char Briquette Ash Fusion Characteristics and the Influence of Phosphorus Additives
,”
Energy Fuels
,
31
(
3
), pp.
2822
2830
. 10.1021/acs.energyfuels.7b00047
28.
Reinmöller
,
M.
,
Schreiner
,
M.
,
Guhl
,
S.
,
Neuroth
,
M.
, and
Meyer
,
B.
,
2017
, “
Formation and Transformation of Mineral Phases in Various Fuels Studied by Different Ashing Methods
,”
Fuel
,
202
, pp.
641
649
. 10.1016/j.fuel.2017.04.115
29.
Roberts
,
L. J.
,
Mason
,
P. E.
,
Jones
,
J. M.
,
Gale
,
W. F.
,
Williams
,
A.
,
Hunt
,
A.
, and
Ashman
,
J.
,
2019
, “
The Impact of Aluminosilicate-Based Additives Upon the Sintering and Melting Behaviour of Biomass Ash
,”
Biomass Bioenergy
,
127
, p.
105284
. 10.1016/j.biombioe.2019.105284
30.
Vassilev
,
S. V.
,
Baxter
,
D.
,
Andersen
,
L. K.
, and
Vassileva
,
C. G.
,
2010
, “
An Overview of the Chemical Composition of Biomass
,”
Fuel
,
89
(
5
), pp.
913
933
. 10.1016/j.fuel.2009.10.022
31.
Xu
,
Y.
,
Zhai
,
M.
,
Jin
,
S.
,
Zou
,
X.
,
Liu
,
S.
, and
Dong
,
P.
,
2019
, “
Numerical Simulation of High-Temperature Fusion Combustion Characteristics for a Single Biomass Particle
,”
Fuel Process. Technol.
,
183
, pp.
27
34
. 10.1016/j.fuproc.2018.10.024
32.
Panahi
,
A.
,
Tarakcioglu
,
M.
,
Schiemann
,
M.
,
Delichatsios
,
M.
, and
Levendis
,
Y. A.
,
2018
, “
On the Particle Sizing of Torrefied Biomass for Co-Firing With Pulverized Coal
,”
Combust. Flame
,
194
, pp.
72
84
. 10.1016/j.combustflame.2018.04.014
33.
Panahi
,
A.
,
Toole
,
N.
,
Yang
,
Y.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2019
, “
Oxy-combustion Behavior of Torrefied Biomass Particles
,”
11th US National Combustion Meeting
,
Pasadena, CA
.
34.
Panahi
,
A.
,
Toole
,
N.
,
Wang
,
X.
, and
Levendis
,
Y. A.
,
2020
, “
On the Minimum Oxygen Requirements for Oxy-Combustion of Single Particles of Torrefied Biomass
,”
Combust. Flame
,
213
, pp.
426
440
. 10.1016/j.combustflame.2019.12.012
35.
Panahi
,
A.
,
Tarakcioglu
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Torrefied Biomass Size for Combustion in Existing Boilers
,”
10th US National Combustion Meeting
,
College Park, MD
.
36.
Panahi
,
A.
,
Vorobiev
,
N.
,
Schiemann
,
M.
,
Tarakcioglu
,
M.
,
Delichatsios
,
M.
, and
Levendis
,
Y. A.
,
2019
, “
Combustion Details of Raw and Torrefied Biomass Fuel Particles With Individually-Observed Size, Shape and Mass
,”
Combust. Flame
,
207
, pp.
327
341
. 10.1016/j.combustflame.2019.06.009
37.
Panahi
,
A.
,
Levendis
,
Y. A.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Scherer
,
V.
,
2016
, “
Combustion Behaviors of a Herbaceous and a Woody Biomass
,”
41st International Technical Conference on Clean Coal & Fuel Systems
,
Clearwater, FL
, pp.
62
72
.
38.
Panahi
,
A.
,
Levendis
,
Y. A.
,
Vorobiev
,
N.
, and
Schiemann
,
M.
,
2017
, “
Direct Observations on the Combustion Characteristics of Miscanthus and Beechwood Biomass Including Fusion and Spherodization
,”
Fuel Process. Technol.
,
166
, pp.
41
49
. 10.1016/j.fuproc.2017.05.029
39.
Damoe
,
A. J.
,
Jensen
,
P. A.
,
Frandsen
,
F. J.
,
Wu
,
H.
, and
Glarborg
,
P.
,
2017
, “
Fly ash Formation During Suspension Firing of Biomass: Effects of Residence Time and Fuel Type
,”
Energy Fuels
,
31
(
1
), pp.
555
570
. 10.1021/acs.energyfuels.6b02051
40.
Strandberg
,
A.
,
Thyrel
,
M.
,
Skoglund
,
N.
,
Lestander
,
T. A.
,
Broström
,
M.
, and
Backman
,
R.
,
2018
, “
Biomass Pellet Combustion: Cavities and Ash Formation Characterized by Synchrotron X-ray Micro-Tomography
,”
Fuel Process. Technol.
,
176
, pp.
211
220
. 10.1016/j.fuproc.2018.03.023
41.
Baxter
,
L. L.
,
Miles
,
T. R.
,
Miles Jr
,
T. R.
,
Jenkins
,
B. M.
,
Milne
,
T.
,
Dayton
,
D.
,
Bryers
,
R. W.
, and
Oden
,
L. L.
,
1998
, “
The Behavior of Inorganic Material in Biomass-Fired Power Boilers: Field and Laboratory Experiences
,”
Fuel Process. Technol.
,
54
(
1–3
), pp.
47
78
. 10.1016/S0378-3820(97)00060-X
42.
Li
,
G.
,
Li
,
S.
,
Xu
,
X.
,
Huang
,
Q.
, and
Yao
,
Q.
,
2013
, “
Dynamic Behavior of Biomass Ash Deposition in a 25 kW One-Dimensional Down-Fired Combustor
,”
Energy Fuels
,
28
(
1
), pp.
219
227
. 10.1021/ef401530a
43.
Robinson
,
A. L.
,
Junker
,
H.
, and
Baxter
,
L. L.
,
2002
, “
Pilot-Scale Investigation of the Influence of Coal−Biomass Cofiring on Ash Deposition
,”
Energy Fuels
,
16
(
2
), pp.
343
355
. 10.1021/ef010128h
44.
Niu
,
Y.
,
Liu
,
S.
, and
Shaddix
,
C. R.
,
2019
, “
An Intrinsic Kinetics Model to Predict Complex Ash Effects (Ash Film, Dilution, and Vaporization) on Pulverized Coal Char Burnout in air (O2/N2) and Oxy-Fuel (O2/CO2) Atmospheres
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
2781
2790
. 10.1016/j.proci.2018.06.010
45.
Baxter
,
L. L.
,
1993
, “
Ash Deposition During Biomass and Coal Combustion: A Mechanistic Approach
,”
Biomass Bioenergy
,
4
(
2
), pp.
85
102
. 10.1016/0961-9534(93)90031-X
46.
Jin
,
X.
,
Ye
,
J.
,
Deng
,
L.
, and
Che
,
D.
,
2017
, “
Condensation Behaviors of Potassium During Biomass Combustion
,”
Energy Fuels
,
31
(
3
), pp.
2951
2958
. 10.1021/acs.energyfuels.6b03381
47.
Theis
,
M.
,
Skrifvars
,
B.-J.
,
Zevenhoven
,
M.
,
Hupa
,
M.
, and
Tran
,
H.
,
2006
, “
Fouling Tendency of Ash Resulting From Burning Mixtures of Biofuels. Part 2: Deposit Chemistry
,”
Fuel
,
85
(
14–15
), pp.
1992
2001
. 10.1016/j.fuel.2006.03.015
48.
Deng
,
L.
,
Jin
,
X.
,
Long
,
J.
, and
Che
,
D.
,
2019
, “
Ash Deposition Behaviors During Combustion of Raw and Water Washed Biomass Fuels
,”
J. Energy Inst.
,
92
(
4
), pp.
959
970
. 10.1016/j.joei.2018.07.009
49.
Wang
,
X.
,
Zhai
,
M.
,
Guo
,
H.
,
Panahi
,
A.
,
Dong
,
P.
, and
Levendis
,
Y. A.
,
2021
, “
High-Temperature Pyrolysis of Biomass Pellets: The Effect of Ash Melting on the Structure of the Char Residue
,”
Fuel
,
285
, p.
119084
. 10.1016/j.fuel.2020.119084
50.
Song
,
X.
,
Lin
,
Z.
,
Bie
,
R.
, and
Wang
,
W.
,
2019
, “
Effects of Additives Blended in Corn Straw to Control Agglomeration and Slagging in Combustion
,”
BioResources
,
14
(
4
), pp.
8963
8972
.
51.
Wang
,
X.
,
Lv
,
W.
,
Guo
,
L.
,
Zhai
,
M.
,
Dong
,
P.
, and
Qi
,
G.
,
2016
, “
Energy and Exergy Analysis of Rice Husk High-Temperature Pyrolysis
,”
Int. J. Hydrogen Energy
,
41
(
46
), pp.
21121
21130
. 10.1016/j.ijhydene.2016.09.155
52.
Gangil
,
S.
,
2014
, “
Beneficial Transitions in Thermogravimetric Signals and Activation Energy Levels Due to Briquetting of Raw Pigeon Pea Stalk
,”
Fuel
,
128
, pp.
7
13
. 10.1016/j.fuel.2014.02.065
53.
Stelte
,
W.
,
Clemons
,
C.
,
Holm
,
J. K.
,
Sanadi
,
A. R.
,
Ahrenfeldt
,
J.
,
Shang
,
L.
, and
Henriksen
,
U. B.
,
2011
, “
Pelletizing Properties of Torrefied Spruce
,”
Biomass Bioenergy
,
35
(
11
), pp.
4690
4698
. 10.1016/j.biombioe.2011.09.025
54.
Ma
,
T.
,
Fan
,
C.
,
Hao
,
L.
,
Li
,
S.
,
Song
,
W.
, and
Lin
,
W.
,
2016
, “
Fusion Characterization of Biomass Ash
,”
Thermochim. Acta
,
638
, pp.
1
9
. 10.1016/j.tca.2016.06.008
55.
Fang
,
X.
, and
Jia
,
L.
,
2012
, “
Experimental Study on Ash Fusion Characteristics of Biomass
,”
Bioresour. Technol.
,
104
, pp.
769
774
. 10.1016/j.biortech.2011.11.055
56.
Lau
,
C. W.
, and
Niksa
,
S.
,
1993
, “
The Impact of Soot on the Combustion Characteristics of Coal Particles of Various Types
,”
Combust. Flame
,
95
(
1–2
), pp.
1
21
. 10.1016/0010-2180(93)90048-8
57.
Hansen
,
L. A.
,
Frandsen
,
F. J.
,
Dam-Johansen
,
K.
,
Sørensen
,
H. S.
, and
Skrifvars
,
B.-J.
,
1999
, “
Characterization of Ashes and Deposits From High-Temperature Coal−Straw Co-Firing
,”
Energy Fuels
,
13
(
4
), pp.
803
816
. 10.1021/ef980203x
58.
Vassilev
,
S. V.
,
Baxter
,
D.
,
Andersen
,
L. K.
, and
Vassileva
,
C. G.
,
2013
, “
An Overview of the Composition and Application of Biomass Ash. Part 1. Phase–Mineral and Chemical Composition and Classification
,”
Fuel
,
105
, pp.
40
76
. 10.1016/j.fuel.2012.09.041
59.
Vassilev
,
S. V.
,
Kitano
,
K.
,
Takeda
,
S.
, and
Tsurue
,
T.
,
1995
, “
Influence of Mineral and Chemical Composition of Coal Ashes on Their Fusibility
,”
Fuel Process. Technol.
,
45
(
1
), pp.
27
51
. 10.1016/0378-3820(95)00032-3
60.
Magdziarz
,
A.
,
Gajek
,
M.
,
Nowak-Woźny
,
D.
, and
Wilk
,
M.
,
2018
, “
Mineral Phase Transformation of Biomass Ashes–Experimental and Thermochemical Calculations
,”
Renewable Energy
,
128
, pp.
446
459
. 10.1016/j.renene.2017.05.057
61.
Reinmöller
,
M.
,
Schreiner
,
M.
,
Guhl
,
S.
,
Neuroth
,
M.
, and
Meyer
,
B.
,
2019
, “
Ash Behavior of Various Fuels: The Role of the Intrinsic Distribution of Ash Species
,”
Fuel
,
253
, pp.
930
940
. 10.1016/j.fuel.2019.05.036
62.
Wang
,
G.
,
Shen
,
L.
, and
Sheng
,
C.
,
2012
, “
Characterization of Biomass Ashes From Power Plants Firing Agricultural Residues
,”
Energy Fuels
,
26
(
1
), pp.
102
111
. 10.1021/ef201134m
63.
Xu
,
Y.
,
Zhai
,
M.
,
Guo
,
H.
,
Qi
,
H.
,
Zou
,
X.
,
Jin
,
S.
, and
Dong
,
P.
,
2019
, “
High-Temperature Pyrolysis Characteristics for a Single Biomass Particle
,”
Energy Fuels
,
33
(
11
), pp.
11153
11162
. 10.1021/acs.energyfuels.9b02759
64.
Johansen
,
J. M.
,
Jakobsen
,
J. G.
,
Frandsen
,
F. J.
, and
Glarborg
,
P.
,
2011
, “
Release of K, Cl, and S During Pyrolysis and Combustion of High-Chlorine Biomass
,”
Energy Fuels
,
25
(
11
), pp.
4961
4971
. 10.1021/ef201098n
65.
Garba
,
M.
,
Ingham
,
D.
,
Ma
,
L.
,
Porter
,
R.
,
Pourkashnian
,
M.
,
Tan
,
H.
, and
Williams
,
A.
,
2012
, “
Prediction of Potassium Chloride Sulfation and Its Effect on Deposition in Biomass-Fired Boilers
,”
Energy Fuels
,
26
(
11
), pp.
6501
6508
. 10.1021/ef201681t
66.
Niu
,
Y.
,
Du
,
W.
,
Tan
,
H.
,
Xu
,
W.
,
Liu
,
Y.
,
Xiong
,
Y.
, and
Hui
,
S.
,
2013
, “
Further Study on Biomass Ash Characteristics at Elevated Ashing Temperatures: The Evolution of K, Cl, S and the Ash Fusion Characteristics
,”
Bioresour. Technol.
,
129
, pp.
642
645
. 10.1016/j.biortech.2012.12.065
67.
Niu
,
Y.
,
Tan
,
H.
,
Wang
,
X.
,
Liu
,
Z.
,
Liu
,
H.
,
Liu
,
Y.
, and
Xu
,
T.
,
2010
, “
Study on Fusion Characteristics of Biomass Ash
,”
Bioresour. Technol.
,
101
(
23
), pp.
9373
9381
. 10.1016/j.biortech.2010.06.144
68.
Wang
,
Q.
,
Han
,
K.
,
Wang
,
J.
,
Gao
,
J.
, and
Lu
,
C.
,
2017
, “
Influence of Phosphorous Based Additives on Ash Melting Characteristics During Combustion of Biomass Briquette Fuel
,”
Renewable Energy
,
113
, pp.
428
437
. 10.1016/j.renene.2017.06.018
You do not currently have access to this content.