Abstract

Soot study is a fundamental issue for the combustion process of hydrocarbon fuels. Losses in combustion efficiency, health risks, environmental loosestrife, and damage in furnaces may appear as a result of soot existence. This present paper aims at providing an experimental mapping of the changes in the soot volume fraction and axial flame mean temperature associated with the addition of different percentages of soot inhibitor additives (namely, Argon, Nitrogen, and Helium) in a vertical laminar diffusion natural gas flame issuing from a honeycomb circular burner. The soot volume fraction is acquired by the laser extinction technique, while the axial variations of the mean flame temperature are accomplished by a bare 51 µm (Pt-30%Rh versus Pt-6%Rh) thermocouple to render radiation loss insignificant. The concentration of the individual additives is varied from 5% to 25% (step 5%) and the experiments are conducted at a fixed natural gas throughput (350 mL/min) to ensure unvaried thermal input. Measurement traverses along and across (at fixed radial locations) are conducted. The fuel flowrate is measured by a precision digital gas flowmeter (type: Varian intelligent), while the flow of the individual additive is admitted via solenoid valves (handled with labview program) and is injected through mixing pipes located at burner entry. The different regimes of the soot inception (molecular; zone 1), soot growth zone (zone 2), and soot oxidation (zone 3) are accurately defined and assessed in relation to the temperature results for the different cases under investigation.

References

1.
Oliveira
,
D. A.
,
2012
, “
Development and Application of a Laminar Coflow Burner for Combustion Studies at High Pressure
,” Ph.D. thesis,
Technische Universiteit Eindhoven
.
2.
Smooke
,
M. D.
,
Long
,
M. B.
,
Connelly
,
B. C.
,
Colket
,
M. B.
, and
Hall
,
R. J.
,
2005
, “
Soot Formation in Laminar Diffusion Flames
,”
Combust. Flame
,
143
(
4
), pp.
613
628
. 10.1016/j.combustflame.2005.08.028
3.
Geigle
,
K. P.
,
Hadef
,
R.
, and
Meier
,
W.
, “
Soot Formation and Flame Characterization of an Aero-Engine Model Combustor Burning Ethylene at Elevated Pressure
,”
Volume 1B: Combustion, Fuels and Emissions
,
Jun. 2013
, p.
V01BT04A024
,
Paper No. GT2013-95316
.
4.
Lou
,
C.
,
Chen
,
C.
,
Sun
,
Y.
, and
Zhou
,
H.
,
2010
, “
Review of Soot Measurement in Hydrocarbon-air Flames
,”
Sci. China Technol. Sci.
,
53
(
8
), pp.
2129
2141
. 10.1007/s11431-010-3212-4
5.
Romero
,
D.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2014
, “
Laminar Flame Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Diesel Flames
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032204
10.1115/1.4027406
6.
Ibrahim
,
M. M.
,
Attia
,
A.
,
Emara
,
A.
, and
Moneib
,
H. A.
,
2020
, “
An Investigation of Soot Volume Fraction and Temperature for Natural gas Laminar Diffusion Flame Established From a Honeycomb Gaseous Burner
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012202
. 10.1115/1.4044123
7.
Salavati-Zadeh
,
A.
,
Esfahanian
,
V.
, and
Afshari
,
A.
,
2013
, “
Detailed Kinetic Modeling of Soot-Particle and key-Precursor Formation in Laminar Premixed and Counterflow Diffusion Flames of Fossil Fuel Surrogates
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031101
. 10.1115/1.4023302
8.
Gu
,
D.
,
Sun
,
Z.
,
Dally
,
B. B.
,
Medwell
,
P. R.
,
Alwahabi
,
Z. T.
, and
Nathan
,
G. J.
,
2017
, “
Simultaneous Measurements of gas Temperature, Soot Volume Fraction and Primary Particle Diameter in a Sooting Lifted Turbulent Ethylene/air non-Premixed Flame
,”
Combust. Flame
,
179
, pp.
33
50
. 10.1016/j.combustflame.2017.01.017
9.
Dobbins
,
R. A.
, and
Megaridis
,
C. M.
,
1987
, “
Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling
,”
Langmuir
,
3
(
2
), pp.
254
259
. 10.1021/la00074a019
10.
di Stasio
,
S.
,
2001
, “
Electron Microscopy Evidence of Aggregation Under Three Different Size Scales for Soot Nanoparticles in Flame
,”
Carbon
,
39
(
1
), pp.
109
118
. 10.1016/S0008-6223(00)00099-3
11.
Shi
,
Y.
,
Cai
,
Y.
,
Fan
,
R.
,
Cui
,
Y.
,
Chen
,
Y.
, and
Ji
,
L.
,
2019
, “
Characterization of Soot Inside a Diesel Particulate Filter During a Nonthermal Plasma Promoted Regeneration Step
,”
Appl. Therm. Eng.
,
150
, pp.
612
619
. 10.1016/j.applthermaleng.2019.01.015
12.
Köylü
,
ÜÖ
,
McEnally
,
C. S.
,
Rosner
,
D. E.
, and
Pfefferle
,
L. D.
,
1997
, “
Simultaneous Measurements of Soot Volume Fraction and Particle Size / Microstructure in Flames Using a Thermophoretic Sampling Technique
,”
Combust. Flame
,
110
(
4
), pp.
494
507
. 10.1016/S0010-2180(97)00089-8
13.
Jung
,
H.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
,
2004
, “
Kinetics and Visualization of Soot Oxidation Using Transmission Electron Microscopy
,”
Combust. Flame
,
136
(
4
), pp.
445
456
. 10.1016/j.combustflame.2003.10.013
14.
Jenei
,
I. Z.
,
Dassenoy
,
F.
,
Epicier
,
T.
,
Khajeh
,
A.
,
Martini
,
A.
,
Uy
,
D.
,
Ghaednia
,
H.
, and
Gangopadhyay
,
A.
,
2019
, “
Mechanical Response of Gasoline Soot Nanoparticles Under Compression: An in Situ TEM Study
,”
Tribol. Int.
,
131
, pp.
446
453
. 10.1016/j.triboint.2018.11.001
15.
Brinen
,
J. S.
, and
Melera
,
A.
,
1972
, “
Electron Spectroscopy for Chemical Analysis (ESCA) Studies on Catalysts. Rhodium on Charcoal
,”
J. Phys. Chem.
,
76
(
18
), pp.
2525
2526
. 10.1021/j100662a007
16.
Yan
,
F.
,
Zhou
,
M.
,
Xu
,
L.
,
Wang
,
Y.
, and
Chung
,
S. H.
,
2019
, “
An Experimental Study on the Spectral Dependence of Light Extinction in Sooting Ethylene Counterflow Diffusion Flames
,”
Exp. Therm. Fluid Sci.
,
100
, pp.
259
270
. 10.1016/j.expthermflusci.2018.09.008
17.
Wei
,
S.
,
Chen
,
J.
,
Xu
,
R.
,
Ding
,
T.
, and
Zhao
,
X.
,
2021
, “
Soot Formation With Light Extinction and Grayscale Extraction Methods Applied to Ethanol-Gasoline Blends Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032302
. 10.1115/1.4048061
18.
Hayashi
,
J.
,
Hashimoto
,
N.
,
Nakatsuka
,
N.
,
Tainaka
,
K.
,
Tsuji
,
H.
,
Tanno
,
K.
,
Watanabe
,
H.
,
Makino
,
H.
, and
Akamatsu
,
F.
,
2019
, “
Simultaneous Imaging of Mie Scattering, PAHs Laser Induced Fluorescence and Soot Laser Induced Incandescence to a lab-Scale Turbulent jet Pulverized Coal Flame
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3045
3052
. 10.1016/j.proci.2018.09.028
19.
Kearney
,
S. P.
,
Guildenbecher
,
D. R.
,
Winters
,
C.
,
Farias
,
P. A.
,
Grasser
,
T. W.
, and
Hewson
,
J. C.
,
2015
, “
Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame
,”
Albuquerque, NM, and Livermore, CA (United States)
. 10.2172/1221520.
20.
Slavinskaya
,
N. A.
, and
Frank
,
P.
,
2009
, “
A Modelling Study of Aromatic Soot Precursors Formation in Laminar Methane and Ethene Flames
,”
Combust. Flame
,
156
(
9
), pp.
1705
1722
. 10.1016/j.combustflame.2009.04.013
21.
Attia
,
A.
, and
Emara
,
A.
, “
An Investigation of Acetylene/Argon gas Additives to Natural gas on the Laminar Diffusion Flame Characteristics for a Honeycomb Gaseous Burner
,”
Volume 6A: Energy
,
Nov. 2016
,
Paper no. IMECE2016-66010
.
22.
Attia
,
A.
, and
Emara
,
A.
, “
Influence of gas Diluents on the Temperature of a Laminar Coflowing jet Diffusion Flame in a Honeycomb Gaseous Burner
,”
Volume 6A: Energy
,
Nov. 2015
,
Paper No. IMECE2015-53597
.
23.
Guo
,
H.
,
Castillo
,
J. A.
, and
Sunderland
,
P. B.
,
2013
, “
Digital Camera Measurements of Soot Temperature and Soot Volume Fraction in Axisymmetric Flames
,”
Appl. Opt.
,
52
(
33
), p.
8040
. 10.1364/AO.52.008040
You do not currently have access to this content.