Abstract

One of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a negative or a positive manner. Solar irradiance is considered to be the most important factor that has an impact on SCPP performance. The investigation includes the study of the relationship between solar insolation and ambient temperatures during the daytime since the difference between the minimum and maximum power values and the performance are very important considering seasonal changes. According to the results, power values are dependent on the amount of solar radiation as well as the ambient temperature, and the importance of selection of location thus climate for an SCPP is found to affect the design of the SCPP.

References

References
1.
Kayiem
,
H. A.
, and
Aja
,
O. C.
,
2016
, “
Historic and Recent Progress in Solar Chimney Power Plant Enhancing Technologies
,”
Renew. Sust. Energy Rev.
,
58
, pp.
1269
1292
.
2.
Schlaich
,
J.
,
Bergermann
,
R.
, and
Schiel
,
W.
,
2004
, “
Sustainable Electricity Generation With Solar Updraft Towers
,”
Struct. Eng. Int.
,
14
(
3
), p.
2018
.
3.
Okoye
,
C. O.
, and
Taylan
,
O.
,
2017
, “
Performance Analysis of a Solar Chimney Power Plant for Rural Areas in Nigeria
,”
Renew. Energy
,
104
, pp.
96
108
.
4.
Cabanyes
,
I.
,
1903
, “
Proyecto de Motor Solar
,”
La Energia Eléctrica—Revista General de Electricidad y sus Aplicaciones
,
8
, pp.
61
65
.
5.
Papageorgiou
,
C.
,
2010
, “
Floating Solar Chimney Technology
,”
Sol. Energy
,
1–5
, pp.
187
222
.
6.
Nazare
,
E. H.
Générateur de Cyclones Artificiels (Generating Artificial Cyclones)
. France Patent No. FR1439849, 1966-05-27; 1964.
7.
Hamilton
,
T.
,
2011
,
Mad Like Tesla: Underdog Inventors and Their Relentless Pursuit of Clean Energy
,
ECW Press
,
Canada
, pp.
93
103
.
8.
Von Backström
,
T. W.
,
Harte
,
R.
,
Höffer
,
R.
,
Krätzig
,
W. B.
,
Kröger
,
D. G.
,
Niemann
,
H. J.
, and
Van Zijl
,
G. P. A. G.
,
2008
, “
State and Recent Advances in Research and Design of Solar Chimney Power Plant Technology
,”
VGB Powertech.
,
88
(
7
), pp.
64
71
.
9.
Dhahri
,
A.
, and
Omri
,
A.
,
2013
, “
A Review of Solar Chimney Power Generation Technology
,”
Int. J. Eng. Adv. Technol.
,
2
(
3
), pp.
1
17
.
10.
Pasumarthi
,
N.
, and
Sherif
,
S. A.
,
1998
, “
Experimental and Theoretical Performance of a Demonstration Solar Chimney Model—Part I: Mathematical Model Development
,”
Int. J. Energy Res.
,
22
(
3
), pp.
277
288
. 10.1002/(SICI)1099-114X(19980310)22:3<277::AID-ER380>3.0.CO;2-R
11.
Pasumarthi
,
N.
, and
Sherif
,
S. A.
,
1998
, “
Experimental and Theoretical Performance of a Demonstration Solar Chimney Model—Part II: Experimental and Theoretical Results and Economic Analysis
,”
Int. J. Energy Res.
,
22
(
5
), pp.
443
461
. 10.1002/(SICI)1099-114X(199804)22:5<443::AID-ER381>3.0.CO;2-V
12.
Koonsrisuk
,
A.
, and
Chitsomboon
,
T.
,
2010, December
, “
Theoretical Turbine Power Yield in Solar Chimney Power Plants
,”
3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications
,
Egypt
,
Dec. 19–22
, IEEE, pp.
339
346
.
13.
Hu
,
S.
,
Leung
,
D. Y.
, and
Chan
,
J. C.
,
2017
, “
Impact of the Geometry of Divergent Chimneys on the Power Output of a Solar Chimney Power Plant
,”
Energy
,
120
, pp.
1
11
. 10.1016/j.energy.2016.12.098
14.
Bernardes
,
M. D. S.
,
Voß
,
A.
, and
Weinrebe
,
G.
,
2003
, “
Thermal and Technical Analyses of Solar Chimneys
,”
Sol. Energy
,
75
(
6
), pp.
511
524
. 10.1016/j.solener.2003.09.012
15.
Al-Dabbas
,
M.
,
2002
, “
A Performance Analysis of Solar Chimney Thermal Power Systems
,”
Thermal Science
,
15
(
3
), pp.
619
642
.
16.
Ayadi
,
A.
,
Driss
,
Z.
,
Bouabidi
,
A.
, and
Abid
,
M. S.
,
2017
, “
Experimental and Numerical Study of the Impact of the Collector Roof Inclination on the Performance of a Solar Chimney Power Plant
,”
Energy Build.
,
139
, pp.
263
276
. 10.1016/j.enbuild.2017.01.047
17.
Osama
,
N.
,
2019
,
Numerical Study of the Effects of Geometric Parameters on Performance of Solar Chimney Power Plants
.
Master thesis
,
Cankaya University
,
Ankara, Turkey
.
18.
Al-Rawe
,
M.
,
Ozgirgin
,
E.
, and
Ayli
,
E.
,
2019
, “
Numerıcal Study of the Influence of Chımney Confıguratıons
,”
A Solar Chımney Power Plant, Uluslarası Isı Bilimi ve Tekniği Kongresi
,
Kocaeli
,
11−14 Eylül
, vol.
1
(
1
), pp.
733
739
.
19.
Li
,
J. Y.
,
Guo
,
P. H.
, and
Wang
,
Y.
,
2012
, “
Effects of Collector Radius and Chimney Height on Power Output of a Solar Chimney Power Plant With Turbines
,”
Renew. Energy
,
47
, pp.
21
28
. 10.1016/j.renene.2012.03.018
20.
Penga
,
Z.
,
Nizetic
,
S.
, and
Arici
,
M.
,
2019
, “
Solar Plant With Short Diffuser Concept: Further Improvement of Numerical Model by Included Influence of Guide Vane Topology on Shape and Stability of Gravitational Vortex
,”
J. Cleaner Prod.
,
212
, pp.
353
361
. 10.1016/j.jclepro.2018.12.021
21.
Yapici
,
E.
,
Ayli
,
E.
, and
Nsaif
,
O.
,
2020
,
Numerical Investigation on the Performance of a Small Scale Solar Chimney Power Plant for Different Geometrical Parameters
,
276
.
22.
Al-Dabbas
,
A. M.
,
2011
, “
A Performance Analysis of Solar Chimney Thermal Power Systems
,”
Thermal Sci.
,
15
(
3
), pp.
619
642
. 10.2298/TSCI101110017A
23.
Zhou
,
X.
,
Yang
,
J.
,
Xiao
,
B.
,
Hou
,
G.
, and
Xing
,
F.
,
2009
, “
Analysis of Chimney Height for Solar Chimney Power Plant
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
178
185
. 10.1016/j.applthermaleng.2008.02.014
24.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
Cambridge, MA, ABD
.
25.
Collares-Pereira
,
M.
, and
Rabl
,
A.
,
1979
, “
The Average Distribution of Solar Radiation Correlations Between Diffuse and Hemispherical and Between Daily and Hourly Insolations Values
,”
Sol. Energy
,
22
(
2
), pp.
155
164
. 10.1016/0038-092X(79)90100-2
26.
FLUENT
, ANSYS Fluent User Guide-FLUENT 18.2.
27.
Ghalamchi
,
M.
,
Kasaeian
,
A.
,
Ghalamchi
,
M.
, and
Mirzahosseini
,
A. H.
,
2016
, “
An Experimental Study on the Thermal Performance of a Solar Chimney with Different Dimensional Parameters
,”
Renew. Energy
,
91
, pp.
477
483
.
You do not currently have access to this content.