Abstract

Syngas production from catalytic gasification of polystyrene and pinewood in CO2 atmosphere was investigated over Ni-Mg/Al2O3 catalyst in a fixed-bed reactor at 900 °C. A quasi in situ method was adopted for catalytic gasification wherein the catalyst placed downstream of the feedstock in the same reactor was used for enhanced syngas production. The effect of catalyst on evolutionary behavior, cumulative syngas yield, syngas composition, and cold gas efficiency was systematically analyzed. The results showed that addition of catalyst for polystyrene gasification resulted in enhanced yields of 63% H2, 20% CO, 119% CH4, and 85% C2-C3 yields. Enhanced H2 and light hydrocarbon yields were mainly from enhanced cracking of pyrolytic vapors from polystyrene degradation, while the CO yield was attributed to CO2-assisted reforming of benzene derivatives from primary cracking and polycyclic aromatic hydrocarbons (PAHs) from secondary gas phase condensations. The yields of H2, CO, CH4, and C2-C3 from pinewood gasification in the presence of catalyst was also enhanced by 150%, 14%, 39%, and 16%, respectively, indicating that Ni-Mg/Al2O3 catalyst can efficiently enhance syngas production in CO2-assisted gasification. A comparison of syngas composition between non-catalytic and catalytic conditions revealed improved syngas quality in catalytic gasification with increased H2 mole fraction but decreased CO mole fraction. Furthermore, cold gas efficiency enhanced from 44% to 57% in catalytic polystyrene gasification, and from 75% to 94% in catalytic pinewood gasification. The results suggest that catalytic CO2 gasification offers a promising pathway for efficient energy production from wastes plastics and biomass while simultaneously using CO2.

References

References
1.
EPA
,
2020
,
Advancing Sustainable Materials Management: 2018 Fact Sheet Assessing Trends in Material Generation and Management in the United States
,
United States Environmental Protection Agency
,
Research Triangle Park, Durham, NC
.
2.
Park
,
K.-B.
,
Jeong
,
Y.-S.
,
Guzelciftci
,
B.
, and
Kim
,
J.-S.
,
2020
, “
Two-Stage Pyrolysis of Polystyrene: Pyrolysis Oil as a Source of Fuels or Benzene, Toluene, Ethylbenzene, and Xylenes
,”
Appl. Energy
,
259
, p.
114240
. 10.1016/j.apenergy.2019.114240
3.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
, pp.
230
236
. 10.1016/j.apenergy.2017.10.130
4.
Rahimi
,
A.
, and
García
,
J. M.
,
2017
, “
Chemical Recycling of Waste Plastics for New Materials Production
,”
Nat. Rev. Chem.
,
1
(
6
), p.
0046
. 10.1038/s41570-017-0046
5.
Yang
,
S.-S.
,
Brandon
,
A. M.
,
Andrew Flanagan
,
J. C.
,
Yang
,
J.
,
Ning
,
D.
,
Cai
,
S.-Y.
,
Fan
,
H.-Q.
,
Wang
,
Z.-Y.
,
Ren
,
J.
,
Benbow
,
E.
,
Ren
,
N.-Q.
,
Waymouth
,
R. M.
,
Zhou
,
J.
,
Criddle
,
C. S.
, and
Wu
,
W.-M.
,
2018
, “
Biodegradation of Polystyrene Wastes in Yellow Mealworms (Larvae of Tenebrio Molitor Linnaeus): Factors Affecting Biodegradation Rates and the Ability of Polystyrene-Fed Larvae to Complete Their Life Cycle
,”
Chemosphere
,
191
, pp.
979
989
. 10.1016/j.chemosphere.2017.10.117
6.
Moore
,
C. J.
,
2008
, “
Synthetic Polymers in the Marine Environment: A Rapidly Increasing, Long-Term Threat
,”
Environ. Res.
,
108
(
2
), pp.
131
139
. 10.1016/j.envres.2008.07.025
7.
Chae
,
Y.
, and
An
,
Y.-J.
,
2017
, “
Effects of Micro- and Nanoplastics on Aquatic Ecosystems: Current Research Trends and Perspectives
,”
Mar. Pollut. Bull.
,
124
(
2
), pp.
624
632
. 10.1016/j.marpolbul.2017.01.070
8.
Lehner
,
R.
,
Weder
,
C.
,
Petri-Fink
,
A.
, and
Rothen-Rutishauser
,
B.
,
2019
, “
Emergence of Nanoplastic in the Environment and Possible Impact on Human Health
,”
Environ. Sci. Technol.
,
53
(
4
), pp.
1748
1765
. 10.1021/acs.est.8b05512
9.
Anuar Sharuddin
,
S. D.
,
Abnisa
,
F.
,
Wan Daud
,
W. M. A.
, and
Aroua
,
M. K.
,
2017
, “
Energy Recovery From Pyrolysis of Plastic Waste: Study on Non-Recycled Plastics (NRP) Data as the Real Measure of Plastic Waste
,”
Energy Convers. Manage.
,
148
, pp.
925
934
. 10.1016/j.enconman.2017.06.046
10.
Sheldon
,
R. A.
,
2014
, “
Green and Sustainable Manufacture of Chemicals From Biomass: State of the Art
,”
Green Chem.
,
16
(
3
), pp.
950
963
. 10.1039/C3GC41935E
11.
Liu
,
X.
,
Ca
,
W.
,
Zhu
,
T.
,
Lv
,
Q.
,
Li
,
Y.
, and
Che
,
D.
,
2019
, “
Simultaneous Removal of NOx and SO2 From Coal-Fired Flue Gas Based on the Catalytic Decomposition of H2O2 Over Fe2(MoO4)3
,”
Chem. Eng. J.
,
371
, pp.
486
499
. 10.1016/j.cej.2019.04.028
12.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
13.
Herdem
,
M. S.
,
Lorena
,
G.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined Power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
. 10.1115/1.4043697
14.
Basha
,
M. H.
,
Sulaiman
,
S. A.
, and
Uemura
,
Y.
,
2020
, “
Co-Gasification of Palm Kernel Shell and Polystyrene Plastic: Effect of Different Operating Conditions
,”
J. Energy Inst.
,
93
(
3
), pp.
1045
1052
. 10.1016/j.joei.2019.09.005
15.
Chan
,
F. L.
, and
Tanksale
,
A.
,
2014
, “
Review of Recent Developments in Ni-Based Catalysts for Biomass Gasification
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
428
438
. 10.1016/j.rser.2014.06.011
16.
Lopez
,
G.
,
Artetxe
,
M.
,
Amutio
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2018
, “
Recent Advances in the Gasification of Waste Plastics. A Critical Overview
,”
Renewable Sustainable Energy Rev.
,
82
(
Part 1
), pp.
576
596
. 10.1016/j.rser.2017.09.032
17.
Inayat
,
M.
,
Sulaiman
,
S. A.
,
Kurnia
,
J. C.
, and
Shahbaz
,
M.
,
2019
, “
Effect of Various Blended Fuels on Syngas Quality and Performance in Catalytic Co-Gasification: A Review
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
252
267
. 10.1016/j.rser.2019.01.059
18.
Xu
,
D.
,
Xiong
,
Y.
,
Ye
,
J.
,
Su
,
Y.
,
Dong
,
Q.
, and
Zhang
,
S.
,
2020
, “
Performances of Syngas Production and Deposited Coke Regulation During Co-Gasification of Biomass and Plastic Wastes Over Ni/γ-Al2O3 Catalyst: Role of Biomass to Plastic Ratio in Feedstock
,”
Chem. Eng. J.
,
392
, p.
123728
. 10.1016/j.cej.2019.123728
19.
Wang
,
Z.
,
Liu
,
X.
,
Burra
,
K. G.
,
Li
,
J.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Towards Enhanced Catalytic Reactivity in CO2-Assisted Gasification of Polypropylene
,”
Fuel
,
284
, p.
119076
. 10.1016/j.fuel.2020.119076.
Paper is January 15, 2021
.
20.
Ruoppolo
,
G.
,
Ammendola
,
P.
,
Chirone
,
R.
, and
Miccio
,
F.
,
2012
, “
H2-Rich Syngas Production by Fluidized Bed Gasification of Biomass and Plastic Fuel
,”
Waste Manag.
,
32
(
4
), pp.
724
732
. 10.1016/j.wasman.2011.12.004
21.
Alvarez
,
J.
,
Kumagai
,
S.
,
Wu
,
C.
,
Yoshioka
,
T.
,
Bilbao
,
J.
,
Olazar
,
M.
, and
Williams
,
P. T.
,
2014
, “
Hydrogen Production From Biomass and Plastic Mixtures by Pyrolysis-Gasification
,”
Int. J. Hydrogen Energy
,
39
(
21
), pp.
10883
10891
. 10.1016/j.ijhydene.2014.04.189
22.
Kim
,
J.-W.
,
Mun
,
T.-Y.
,
Kim
,
J.-O.
, and
Kim
,
J.-S.
,
2011
, “
Air Gasification of Mixed Plastic Wastes Using a Two-Stage Gasifier for the Production of Producer Gas With Low Tar and a High Caloric Value
,”
Fuel
,
90
(
6
), pp.
2266
2272
. 10.1016/j.fuel.2011.02.021
23.
Ahmad
,
N.
,
Ahmad
,
N.
,
Maafa
,
I. M.
,
Ahmed
,
U.
,
Akhter
,
P.
,
Shehzad
,
N.
,
Amjad
,
U.-e-S.
, and
Hussain
,
M.
,
2020
, “
Thermal Conversion of Polystyrene Plastic Waste to Liquid Fuel via Ethanolysis
,”
Fuel
,
279
, p.
118498
. 10.1016/j.fuel.2020.118498
24.
Efika
,
C. E.
,
Wu
,
C.
, and
Williams
,
P. T.
,
2012
, “
Syngas Production From Pyrolysis–Catalytic Steam Reforming of Waste Biomass in a Continuous Screw Kiln Reactor
,”
J. Anal. Appl. Pyrolysis.
,
95
, pp.
87
94
. 10.1016/j.jaap.2012.01.010
25.
Wu
,
C.
, and
Williams
,
P. T.
,
2009
, “
Hydrogen Production From the Pyrolysis−Gasification of Polypropylene: Influence of Steam Flow Rate, Carrier Gas Flow Rate and Gasification Temperature
,”
Energy Fuels
,
23
(
10
), pp.
5055
5061
. 10.1021/ef900278w
26.
Chen
,
G.
,
Liu
,
F.
,
Guo
,
X.
,
Zhang
,
Y.
,
Yan
,
B.
,
Cheng
,
Z.
,
Xiao
,
L.
,
Ma
,
W.
, and
Hou
,
L.
,
2018
, “
Co-gasification of Acid Hydrolysis Residues and Sewage Sludge in a Downdraft Fixed Gasifier With CaO as an In-Bed Additive
,”
Energy Fuels
,
32
(
5
), pp.
5893
5900
. 10.1021/acs.energyfuels.7b03960
27.
Inayat
,
M.
,
Sulaiman
,
S. A.
, and
Kurnia
,
J. C.
,
2019
, “
Catalytic Co-Gasification of Coconut Shells and Oil Palm Fronds Blends in the Presence of Cement, Dolomite, and Limestone: Parametric Optimization via Box Behnken Design
,”
J. Energy Inst.
,
92
(
4
), pp.
871
882
. 10.1016/j.joei.2018.08.002
28.
Galadima
,
A.
, and
Muraza
,
O.
,
2015
, “
In Situ Fast Pyrolysis of Biomass With Zeolite Catalysts for Bioaromatics/Gasoline Production: A Review
,”
Energy Convers. Manage.
,
105
, pp.
338
354
. 10.1016/j.enconman.2015.07.078
29.
Colby
,
J. L.
,
Dauenhauer
,
P. J.
, and
Schmidt
,
L. D.
,
2008
, “
Millisecond Autothermal Steam Reforming of Cellulose for Synthetic Biofuels by Reactive Flash Volatilization
,”
Green Chem.
,
10
(
7
), pp.
773
783
. 10.1039/b804691c
30.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
, Lei, T., and Gupta, A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
. 10.1115/1.4048062
31.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
. 10.1115/1.4048245
32.
Liu
,
X.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2020
, “
On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene
,”
Appl. Energy
,
279
, p.
115811
. 10.1016/j.apenergy.2020.115811
33.
Horton
,
S. R.
,
Woeckener
,
J.
,
Mohr
,
R.
,
Zhang
,
Y.
,
Petrocelli
,
F.
, and
Klein
,
M. T.
,
2016
, “
Molecular-Level Kinetic Modeling of the Gasification of Common Plastics
,”
Energy Fuels
,
30
(
3
), pp.
1662
1674
. 10.1021/acs.energyfuels.5b02047
34.
Lee
,
T.
,
Jung
,
S.
,
Park
,
Y.-K.
,
Kim
,
T.
,
Wang
,
H.
,
Moon
,
D. H.
, and
Kwon
,
E. E.
,
2020
, “
Catalytic Pyrolysis of Polystyrene Over Steel Slag Under CO2 Environment
,”
J. Hazard. Mater.
,
395
, p.
122576
. 10.1016/j.jhazmat.2020.122576
35.
Yan
,
Y.
,
Yan
,
H.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2018
, “
Thermodynamic Analysis on Reaction Characteristics of the Coupling Steam, CO2 and O2 Reforming of Methane
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102203
. 10.1115/1.4040074
36.
Garcia
,
L.
,
Salvador
,
M. L.
,
Arauzo
,
J.
, and
Bilbao
,
R.
,
2001
, “
CO2 as a Gasifying Agent for Gas Production From Pine Sawdust at Low Temperatures Using a Ni/Al Coprecipitated Catalyst
,”
Fuel Process. Technol.
,
69
(
2
), pp.
157
174
. 10.1016/S0378-3820(00)00138-7
37.
Leung
,
D. Y. C.
,
Yin
,
X. L.
, and
Wu
,
C. Z.
,
2004
, “
A Review on the Development and Commercialization of Biomass Gasification Technologies in China
,”
Renewable Sustainable Energy Rev.
,
8
(
6
), pp.
565
580
. 10.1016/j.rser.2003.12.010
38.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via the Boudouard Reaction: A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
615
632
. 10.1016/j.rser.2014.08.034
39.
Noichi
,
H.
,
Uddin
,
A.
, and
Sasaoka
,
E.
,
2010
, “
Steam Reforming of Naphthalene as Model Biomass Tar Over Iron–Aluminum and Iron–Zirconium Oxide Catalyst Catalysts
,”
Fuel Process. Technol.
,
91
(
11
), pp.
1609
1616
. 10.1016/j.fuproc.2010.06.009
40.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Progr. Energy Combust. Sci.
,
62
, pp.
33
86
. 10.1016/j.pecs.2017.05.004
41.
Liu
,
Q.
,
Wang
,
S.
,
Zheng
,
Y.
,
Luo
,
Z.
, and
Cen
,
K.
,
2008
, “
Mechanism Study of Wood Lignin Pyrolysis by Using TG–FTIR Analysis
,”
J. Anal. Appl. Pyrolysis.
,
82
(
1
), pp.
170
177
. 10.1016/j.jaap.2008.03.007
42.
Persson
,
H.
, and
Yang
,
W.
,
2019
, “
Catalytic Pyrolysis of Demineralized Lignocellulosic Biomass
,”
Fuel
,
252
, pp.
200
209
. 10.1016/j.fuel.2019.04.087
43.
Horton
,
S. R.
,
Mohr
,
R. J.
,
Zhang
,
Y.
,
Petrocelli
,
F. P.
, and
Klein
,
M. T.
,
2016
, “
Molecular-Level Kinetic Modeling of Biomass Gasification
,”
Energy Fuels
,
30
(
3
), pp.
1647
1661
. 10.1021/acs.energyfuels.5b01988
44.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
He
,
X.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Syngas Evolution and Energy Efficiency in CO2-Assisted Gasification of Pine Bark
,”
Appl. Energy
,
269
, p.
114996
. 10.1016/j.apenergy.2020.114996
45.
Cao
,
Y.
,
Gao
,
Z.
,
Jin
,
J.
,
Zhou
,
H.
,
Cohron
,
M.
,
Zhao
,
H.
,
Liu
,
H.
, and
Pan
,
W.
,
2008
, “
Synthesis Gas Production With an Adjustable H2/CO Ratio Through the Coal Gasification Process: Effects of Coal Ranks and Methane Addition
,”
Energy Fuels
,
22
(
3
), pp.
1720
1730
. 10.1021/ef7005707
46.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
. 10.1115/1.4007660
You do not currently have access to this content.