Abstract

This study aims to better understand the aluminum oxide agglomerates breakup mechanism, consequently determining the best solution for the solid rocket motor (SRM) nozzle erosion problem. Two-phase air-water flow experimental investigation was conducted as a substitute for liquid aluminum agglomerates and exhaust combustion gases. The results show that increasing the exhaust air velocity enhances the droplet's breakup tendency to reduce the average diameter and increase droplet numbers per the testing channel volume. Numerical models were constructed and validated using the experimental results. The percentage error in the droplets’ average diameter and the number is between 6 and 15% and 8 and 18%, respectively. Furthermore, the effect of reducing the liquid surface tension was studied. The results showed that it facilitates water bodies’ separation from the interface surface, because of the reduced bounding forces between surface’s molecules, which enhances the breakup process (0.5–17% increase in the droplets’ average diameter and 4–100% increase in its number) and reduces the droplets impact on the nozzle walls, hence reducing the SRM nozzle erosion problem.

References

1.
Swope
,
L. W.
, and
Berard
,
M. F.
,
1964
, “
Effects of Solid-Rocket Propellant Formulations and Exhaust-Gas Chemistries on the Erosion of Graphite Nozzles
,”
AIAA Solid Propellant Rocket Conference
,
Palo Alto, CA
,
Jan
.
2.
Geisler
,
R. L.
,
1978
, “
The Relationship Between Solid Propellant Formulation Variables and Nozzle Recession Rates
,”
JANNAF Rocket Nozzle Technology Subcommittee Workshop
,
Lancaster, CA
,
July 12–13
.
3.
Borass
,
S.
,
1984
, “
Modeling Slag Deposition in the Space Shuttle Solid Rocket Motor
,”
J. Spacecraft Rockets
,
21
(
1
), pp.
47
54
. 10.2514/3.8606
4.
Wong
,
E.
,
1968
, “
Solid Rocket Nozzle Design Summary
,”
Proceedings of 4th Propulsion Joint Specialist Conference
,
Cleveland, OH
,
June 10–14
.
5.
Thakre
,
P.
, and
Yang
,
V.
,
2008
, “
Chemical Erosion of Carbon–Carbon/Graphite Nozzles in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
24
(
4
), pp.
822
833
. 10.2514/1.34946
6.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Chemical Erosion of Refractory Metal Nozzle Inserts in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
1
), pp.
40
50
. 10.2514/1.37922
7.
Thakre
,
P.
, and
Yang
,
V.
,
2012
, “
Effect of Surface Roughness and Radiation on Graphite Nozzle Erosion in Solid Rocket Motors
,”
J. Propul. Power
,
28
(
2
), pp.
448
451
. 10.2514/1.B34238
8.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Mitigation of Graphite Nozzle Erosion by Boundary Layer Control in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
5
), pp.
1079
1085
. 10.2514/1.41293
9.
Xiao
,
Y.
, and
Amano
,
R.
,
2006
, “
Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor
,”
WIT Transactions on Engineering Sciences
,
52
, pp.
153
164
. 10.2495/AFM06016
10.
Besnerais
,
G.
,
Nugue
,
M.
,
Devillers
,
R. W.
, and
Cesco
,
N.
,
2017
, “
Experimental Analysis of Solid-Propellant Surface During Combustion with Shadowgraphy Images: New Tools to Assist Aluminum-Agglomeration Modelling
,”
Proceedings of 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS).
,
Milan, Italy
,
July 3–6
.
11.
Grigor’ev
,
V. G.
,
Zarko
,
V. E.
, and
Kutsenogii
,
K. P.
,
1981
, “
Experimental Investigation of the Agglomeration of Aluminum Particles in Burning Condensed Systems
,”
Combustion, Explosion and Shock Waves
,
17
(
3
), pp.
245
251
. 10.1007/BF00751292
12.
Son
,
S.
,
Sivathanu
,
Y. R.
,
Moore
,
J. E.
, and
Lim
,
J.
,
2009
, “
Experimental Characteristics of Particle Dynamics Within Solid Rocket Motors Environments
,”
56th JANNAF Interagency Joint Propulsion Meeting, FA9300-08-M-3022
,
Las Vegas, NV
,
Apr. 14–17
.
13.
Carlotti
,
S.
,
Anfossi
,
J.
,
Bellini
,
R.
,
Colombo
,
G.
, and
Maggi
,
F.
,
2019
, “
Particulate Phase Evolution Inside Solid Rocket Motors: Preliminary Results
,”
Proceedings of 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS).
,
Madrid, Spain
,
July 1–4
.
14.
Butler
,
A. G.
,
1988
, “
Holographic Investigation of Solid Propellant Combustion
,”
Postgraduate thesis
,
Naval Postgraduate School
,
Monterey, CA
.
15.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
, and
Li
,
J.
,
2005
, “
New Method to Determine the Velocities of Particles on a Solid Propellant Surface
,”
ASME J. Heat. Trans.
,
127
(
9
), pp.
1057
1061
. 10.1115/1.1999652
16.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
,
Li
,
J.
, and
He
,
G.
,
2003
, “
Particle Velocity on Solid-Propellant Surface Using X-ray Real-Time Radiography
,”
AIAA J.
,
41
(
9
), pp.
1763
1770
. 10.2514/2.7294
17.
Li
,
Z.
,
Wang
,
N.
,
Shi
,
B.
,
Li
,
S.
, and
Yang
,
R.
,
2019
, “
Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors
,”
Acta Astronautica
,
159
, pp.
33
40
. 10.1016/j.actaastro.2019.03.022
18.
Majdalani
,
J.
,
Katta
,
A.
,
Barber
,
T.
, and
Maicke
,
B.
, “
Characterization of Particle Trajectories in Solid Rocket Motors
,”
Proceedings of 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
San Jose, CA
,
July 14–17
.
19.
Simoes
,
M.
,
Della Pieta
,
P.
,
Godfroy
,
F.
, and
Simonin
,
O.
, 2005, “
Continuum Modeling of the Dispersed Phase in Solid Rocket Motors
,”
Proceedings of 17th AIAA Computational Fluid Dynamics Conference
,
June
.
20.
Amano
,
R. S.
, and
Yen
,
Y. H.
,
2016
, “
Investigation of Alumina Flow Breakup Process in Solid Rocket Propulsion Chamber
,”
AIAA 2016 SciTech, No. 2318567.
21.
Amano
,
R. S.
, and
Yen
,
Y.-H.
, 2015, “
Study of Alumina Flow in a Propulsion Chamber
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
.
22.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part B: Vertical Convergent-Divergent Nozzle
,”
ASME. J. Energy Resour. Technol.
,
142
(
9
), p.
091301
. 10.1115/1.4046627
23.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part A: Horizontal Converging–Diverging Nozzle
,”
ASME. J. Energy Resour. Technol.
,
142
(
5
), p.
052102
. 10.1115/1.4046081
24.
Anson
,
J.
,
Drew
,
R.
, and
Gruzleski
,
J.
,
1999
, “
The Surface Tension of Molten Aluminum and Aluminum-Silicon-Magnesium Alloy Under Vacuum and Hydrogen Atmospheres
,”
Metallurgical Mater. Transactions B
,
30
(
6
), pp.
1027
1032
. 10.1007/s11663-999-0108-4
25.
Yen
,
Y.-H.
,
2016
, “
Numerical and Experimental Study of Liquid Break-up Process in Solid Rocket Motor Nozzle
,”
Ph.D. dissertation
,
The University of Wisconsin-Milwaukee
,
Milwaukee, WI
.
26.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2015
, “
Large Eddy Simulation of an N-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
,
Houston, TX
,
Nov. 8–11
, p.
V002T06A008
.
27.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME. J. Energy Resour. Technol.
,
140
(
5
), p.
052203
. 10.1115/1.4039549
28.
Plengsaard
,
C.
,
2013
, “
Improved Engine Wall Models for Large Eddy Simulation (LES)
,”
Ph.D. dissertation
,
University of Wisconsin Madison
,
Madison, WI
.
29.
Hasan
,
A.
,
Elgammal
,
T.
,
Jackson
,
R.
, and
Amano
,
R.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME. J. Energy Resour. Technol
,
142
(
6
), p.
061302
. 10.1115/1.4045463.
30.
Hasan
,
A.
,
Abousabae
,
M.
,
Salem
,
A.
, and
Amaono
,
R.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME. J. Energy Resour. Technol.
,
143
(
1
), p.
011302
. 10.1115/1.4047602
31.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME. J. Energy Resour. Technol.
,
142
(
8
), p.
083001
. 10.1115/1.4046079
32.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2014
, “
Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations
,”
ASME. J. Energy Resour. Technol.
,
136
(
1
), p.
012204
. 10.1115/1.4024861
33.
Yuan
,
S.
,
Dabirian
,
R.
,
Shoham
,
O.
, and
Mohan
,
R. S.
, “
Numerical Simulation of Liquid Droplet Coalescence and Breakup
,”
ASME. J. Energy Resour. Technol.
,
142
(
10
), p.
102101
. 10.1115/1.4046603
34.
Carlos Berrio
,
J.
,
Pereyra
,
E.
, and
Ratkovich
,
N.
,
2018
, “
Computational Fluid Dynamics Modeling of Gas–Liquid Cylindrical Cyclones, Geometrical Analysis
,”
ASME. J. Energy Resour. Technol.
,
140
(
9
), p.
092003
. 10.1115/1.4039609
35.
Ballesteros
,
M.
,
Ratkovich
,
N.
, and
Pereyra
,
E.
,
2021
, “
Analysis and Modeling of Liquid Holdup in Low Liquid Loading Two-Phase Flow Using Computational Fluid Dynamics and Experimental Data
,”
ASME. J. Energy Resour. Technol.
,
143
(
1
), p.
012105
. 10.1115/1.4047604
36.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2020
, “
Development of a Numerical Model for Single- and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME. J. Energy Resour. Technol.
,
142
(
4
), p.
042901
. 10.1115/1.4044574
You do not currently have access to this content.