Abstract

Combined use of plastic and biomass wastes offers promising pathway for simultaneous energy production and waste disposal. In this article, the co-pyrolysis of pinewood and polycarbonate (PC) was performed in a fixed bed reactor to quantify their synergistic interaction on the product output and determine the effect of char intermediates on the synergistic effects. The extent of synergistic effects was obtained via a direct comparison of results from co-pyrolysis of pinewood–polycarbonate mixture with the weighted average values from pyrolysis of individual components. The observed synergistic effects were further examined from the influence of char intermediates using tailored feedstock configurations to gain more insights into the synergistic mechanism. The results showed co-pyrolysis resulted in enhancement by 33% in H2, 26% in CO, and 19% in total syngas yields compared to their weighted values from individual pyrolysis. Co-pyrolysis also exhibited superiority in energy recovery with the overall energy efficiency promoted from 42.9% to 48.6%. Deconvolution of synergistic effects revealed that pinewood char catalytically enhanced PC degradation, while the effect of PC char on pinewood pyrolysis was minimal. This article provides results on deconvolved understanding of synergistic effects in co-pyrolysis of lignocellulosic biomass and PC wastes, which is very helpful in designing clean and efficient energy recovery systems from these waste resources.

References

1.
Dudley
,
R.
, and
BP Energy Outlook
,
2014
, “
BP Energy Outlook 2019 Edition the Energy Outlook Explores the Forces Shaping the Global Energy Transition Out to 2040 and the Key Uncertainties Surrounding That
,”
Energy Outlook
, February 15, 2019, pp.
1
73
, https://www.bp.com/en/global/corporate/news-and-insights/pres-releases/bp-energy-outlook-2019.html.
2.
Sheldon
,
R. A.
,
2014
, “
Green and Sustainable Manufacture of Chemicals From Biomass: State of the art
,”
Green Chem.
,
16
(
3
), pp.
950
963
. 10.1039/C3GC41935E
3.
Chan
,
F. L.
, and
Tanksale
,
A.
,
2014
, “
Review of Recent Developments in Ni-Based Catalysts for Biomass Gasification
,”
Renew. Sustain. Energy Rev.
,
38
(
1
), pp.
428
438
. 10.1016/j.rser.2014.06.011
4.
Bai
,
B.
,
Liu
,
Y.
,
Meng
,
X.
,
Liu
,
C.
,
Zhang
,
H.
,
Zhang
,
W.
, and
Jin
,
H.
,
2020
, “
Experimental Investigation on Gasification Characteristics of Polycarbonate (PC) Microplastics in Supercritical Water
,”
J. Energy Inst.
,
93
(
2
), pp.
624
633
. 10.1016/j.joei.2019.06.003
5.
Antonakou
,
E. V.
,
Kalogiannis
,
K. G.
,
Stefanidis
,
S. D.
,
Karakoulia
,
S. A.
,
Triantafyllidis
,
K. S.
,
Lappas
,
A. A.
, and
Achilias
,
D. S.
,
2014
, “
Catalytic and Thermal Pyrolysis of Polycarbonate in a Fixed-Bed Reactor: The Effect of Catalysts on Products Yields and Composition
,”
Polym. Degrad. Stab.
,
110
(
12
), pp.
482
491
. 10.1016/j.polymdegradstab.2014.10.007
6.
Do
,
T.
,
Baral
,
E. R.
, and
Kim
,
J. G.
,
2018
, “
Chemical Recycling of Poly(Bisphenol A Carbonate): 1,5,7-Triazabicyclo[4.4.0]-dec-5-ene Catalyzed Alcoholysis for Highly Efficient Bisphenol A and Organic Carbonate Recovery
,”
Polymer
,
143
, pp.
106
114
. 10.1016/j.polymer.2018.04.015
7.
Wang
,
J.
,
Jiang
,
J.
,
Meng
,
X.
,
Li
,
M.
,
Wang
,
X.
,
Pang
,
S.
,
Wang
,
K.
,
Sun
,
Y.
,
Zhong
,
Z.
,
Ruan
,
R.
, and
Ragauskas
,
A. J.
,
2020
, “
Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes Over Fe- and Ce-Loaded Aluminum Oxide Catalysts
,”
Environ. Sci. Technol.
,
54
(
13
), pp.
8390
8400
. 10.1021/acs.est.0c00899
8.
Arulmozhiraja
,
S.
,
Coote
,
M. L.
,
Kitahara
,
Y.
,
Juhász
,
M.
, and
Fujii
,
T.
,
2011
, “
Is the Bisphenol a Biradical Formed in the Pyrolysis of Polycarbonate?
,”
J. Phys. Chem. A.
,
115
(
19
), pp.
4874
4881
. 10.1021/jp1093004
9.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel.
,
257
, p.
116025
. 10.1016/j.fuel.2019.116025
10.
Dai
,
G.
,
Zhu
,
Y.
,
Yang
,
J.
,
Pan
,
Y.
,
Wang
,
G.
,
Reubroycharoen
,
P.
, and
Wang
,
S.
,
2019
, “
Mechanism Study on the Pyrolysis of the Typical Ether Linkages in Biomass
,”
Fuel
,
249
, pp.
146
153
. 10.1016/j.fuel.2019.03.099
11.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Prog. Energy Combust. Sci.
,
62
, pp.
33
86
. 10.1016/j.pecs.2017.05.004
12.
Lopez
,
G.
,
Artetxe
,
M.
,
Amutio
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2018
, “
Recent Advances in the Gasification of Waste Plastics. A Critical Overview
,”
Renew. Sustain. Energy Rev.
,
82
(
Part 1
), pp.
576
596
. 10.1016/j.rser.2017.09.032
13.
Lopez
,
G.
,
Erkiaga
,
A.
,
Amutio
,
M.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2015
, “
Effect of Polyethylene Co-Feeding in the Steam Gasification of Biomass in a Conical Spouted Bed Reactor
,”
Fuel
,
153
, pp.
393
401
. 10.1016/j.fuel.2015.03.006
14.
Robinson
,
T.
,
Bronson
,
B.
,
Gogolek
,
P.
, and
Mehrani
,
P.
,
2016
, “
Comparison of the Air-Blown Bubbling Fluidized bed Gasification of Wood and Wood–PET Pellets
,”
Fuel
,
178
, pp.
263
271
. 10.1016/j.fuel.2016.03.038
15.
Pinto
,
F.
,
André
,
R.
,
Miranda
,
M.
,
Neves
,
D.
,
Varela
,
F.
, and
Santos
,
J.
,
2016
, “
Effect of Gasification Agent on Co-Gasification of Rice Production Wastes Mixtures
,”
Fuel
,
180
, pp.
407
416
. 10.1016/j.fuel.2016.04.048
16.
Brachi
,
P.
,
Chirone
,
R.
,
Miccio
,
F.
,
Miccio
,
M.
,
Picarelli
,
A.
, and
Ruoppolo
,
G.
,
2014
, “
Fluidized Bed Co-Gasification of Biomass and Polymeric Wastes for a Flexible End-Use of the Syngas: Focus on Bio-Methanol
,”
Fuel
,
128
, pp.
88
98
. 10.1016/j.fuel.2014.02.070
17.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
Policella
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Co-Pyrolysis of Waste Tire and Pine Bark for Syngas and Char Production
,”
Fuel
,
274
, pp.
117878
. 10.1016/j.fuel.2020.117878
18.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
, pp.
230
236
. 10.1016/j.apenergy.2017.10.130
19.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
. 10.1016/j.apenergy.2010.07.007
20.
Xue
,
Y.
,
Zhou
,
S.
,
Brown
,
R. C.
,
Kelkar
,
A.
, and
Bai
,
X.
,
2015
, “
Fast Pyrolysis of Biomass and Waste Plastic in a Fluidized Bed Reactor
,”
Fuel
,
156
, pp.
40
46
. 10.1016/j.fuel.2015.04.033
21.
Déparrois
,
N.
,
Singh
,
P.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Syngas Production From Co-Pyrolysis and Co-Gasification of Polystyrene and Paper With CO2
,”
Appl. Energy
,
246
, pp.
1
10
. 10.1016/j.apenergy.2019.04.013
22.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Kinetics of Synergistic Effects in Co-Pyrolysis of Biomass With Plastic Wastes
,”
Appl. Energy
,
220
, pp.
408
418
. 10.1016/j.apenergy.2018.03.117
23.
Wu
,
C.
, and
Williams
,
P. T.
,
2010
, “
Pyrolysis–Gasification of Plastics, Mixed Plastics and Real-World Plastic Waste With and Without Ni–Mg–Al Catalyst
,”
Fuel
,
89
(
10
), pp.
3022
3032
. 10.1016/j.fuel.2010.05.032
24.
Alvarez
,
J.
,
Kumagai
,
S.
,
Wu
,
C.
,
Yoshioka
,
T.
,
Bilbao
,
J.
,
Olazar
,
M.
, and
Williams
,
P. T.
,
2014
, “
Hydrogen Production From Biomass and Plastic Mixtures by Pyrolysis-Gasification
,”
Int. J. Hydrogen Energy
,
39
(
21
), pp.
10883
10891
. 10.1016/j.ijhydene.2014.04.189
25.
Jakab
,
E.
,
Várhegyi
,
G.
, and
Faix
,
O.
,
2000
, “
Thermal Decomposition of Polypropylene in the Presence of Wood-Derived Materials
,”
J. Anal. Appl. Pyrolysis
,
56
(
2
), pp.
273
285
. 10.1016/S0165-2370(00)00101-7
26.
China National Standards and Codes: GB/T 31391-2015
,
2015
,
Ultimate Analysis of Coal
,
Standardization Administration of the People's Republic of China
,
Beijing
.
27.
China National Standards and Codes: GB/T 212-2008
,
2008
,
Proximate Analysis of Coal
,
Standardization Administration of the People's Republic of China
,
Beijing
.
28.
China National Standards and Codes: GB/T 213-2008
,
2008
,
Determination of Calorific Value of Coal
,
Standardization Administration of the People's Republic of China
,
Beijing
.
29.
Othman
,
N.
,
Basri
,
N. E. A.
, and
Yunus
,
M. N. M.
,
2008
, “
Determination of Physical and Chemical Characteristics of Electronic Plastic Waste (Ep-Waste) Resin Using Proximate and Ultimate Analysis Method
,”
ICCBT
,
1
(
1
), pp.
169
180
.
30.
Liu
,
X.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2020
, “
On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene
,”
Appl. Energy
,
279
, p.
115811
. 10.1016/j.apenergy.2020.115811
31.
Wang
,
Z.
,
Liu
,
X.
,
Burra
,
K. G.
,
Li
,
J.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Towards Enhanced Catalytic Reactivity in CO2-Assisted Gasification of Polypropylene
,”
Fuel
,
284
, p.
119076
. 10.1016/j.fuel.2020.119076
32.
Zhang
,
J.
,
Sun
,
J.
, and
Wang
,
Y.
,
2020
, “
Recent Advances in the Selective Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates to Arenes
,”
Green Chem.
,
22
(
4
), pp.
1072
1098
. 10.1039/C9GC02762A
33.
Prasomsri
,
T.
,
Shetty
,
M.
,
Murugappan
,
K.
, and
Román-Leshkov
,
Y.
,
2014
, “
Insights Into the Catalytic Activity and Surface Modification of MoO3 During the Hydrodeoxygenation of Lignin-Derived Model Compounds Into Aromatic Hydrocarbons Under Low Hydrogen Pressures
,”
Energy Environ. Sci.
,
7
(
8
), pp.
2660
2669
. 10.1039/C4EE00890A
34.
Guo
,
X.
,
Wang
,
W.
,
Wu
,
K.
,
Huang
,
Y.
,
Shi
,
Q.
, and
Yang
,
Y.
,
2019
, “
Preparation of Fe Promoted MoS2 Catalysts for the Hydrodeoxygenation of p-Cresol as a Model Compound of Lignin-Derived Bio-Oil
,”
Biomass Bioenergy
,
125
, pp.
34
40
. 10.1016/j.biombioe.2019.04.014
35.
Persson
,
H.
, and
Yang
,
W.
,
2019
, “
Catalytic Pyrolysis of Demineralized Lignocellulosic Biomass
,”
Fuel
,
252
, pp.
200
209
. 10.1016/j.fuel.2019.04.087
36.
Wang
,
K.
,
Zhang
,
J.
,
Shanks
,
B. H.
, and
Brown
,
R. C.
,
2015
, “
The Deleterious Effect of Inorganic Salts on Hydrocarbon Yields From Catalytic Pyrolysis of Lignocellulosic Biomass and Its Mitigation
,”
Appl Energy.
,
148
, pp.
115
120
. 10.1016/j.apenergy.2015.03.034
37.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel gas CO via the Boudouard Reaction: A Review
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
615
632
. 10.1016/j.rser.2014.08.034
You do not currently have access to this content.