Abstract

Landfill reclamation is a good solution to utilize the wasted land occupied by municipal solid waste dumpsites or landfill sites. This also offers a good means to recover valuable materials and form environmentally benign green refuse-derived fuel (RDF) for use in power production. However, due to the heterogenous composition of the wastes, it is crucial to homogenize and upgrade the waste hydrocarbon fuel properties. Torrefaction is a thermochemical process that utilizes low temperature and inert environment to drive off the moisture and volatile fractions present in wastes to form valuable fuel. This upgraded RDF from reclaimed landfills offer high energy density and favorable hydrophobicity for use as a fuel feedstock in gasification to produce syngas for power generation. The objectives of this study are to first upgrading the reclaimed landfill wastes to RDF using torrefaction followed by its conversion to form clean syngas in a downdraft gasifier. This study examines the effect of air ratio on syngas heating value and cold gas efficiency. A comparison is made on the syngas produced from gasification using reclaimed landfill wastes and torrefied RDF. Experiments were conducted using a 10 kg/h lab-scale downdraft gasifier. The air ratios examined were 0.22, 0.27, and 0.32. The results showed an optimum air ratio of 0.27 operated with a gasifier using torrefied RDF. The results showed improved syngas quality, in terms of syngas composition, lower heating value, and cold gas efficiency. The lower heating value of 4.22 MJ/Nm3 and the cold gas efficiency of 65.84% were achieved. The results showed that landfill mining can provide ultimate solution to get rid of dumped wastes from landfills using torrefaction for high-quality fuel followed by the recovery of green and clean syngas energy using gasification.

References

References
1.
Kaza
,
S.
,
Yao
,
L.
,
Bhada-Tata
,
B.
, and
Woerden
,
F. V.
,
2018
,
What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050
,
International Bank for Reconstruction and Development, The World Bank
,
Washington, DC
.
2.
Solid Waste and Emergency Response
,
1997
,
Landfill Reclamation
,
US Environmental Protection Agency
,
Washington, DC
.
3.
Kerdsuwan
,
S.
, and
Laohalidanond
,
K.
,
2019
,
Book Chapter in Innovations in Sustainable Energy and Cleaner Environment
,
Springer Publishers
,
Singapore
, pp.
101
116
.
4.
Kerdsuwan
,
S.
, and
Laohalidanond
,
K.
,
2014
,
Book Chapter in Novel Combustion Concepts for Sustainable Energy Development
,
Springer Publishers
,
New Delhi, India
, pp.
485
499
.
5.
Kerdsuwan
,
S.
,
Meenaroch
,
P.
, and
Chalermcharoenrat
,
T.
,
2016
, “
The Novel Design and Manufacturing Technology of Densified RDF From Reclaimed Landfill Without a Mixing Binding Agent Using a Hydraulic Hot Pressing Machine
,”
MATEC Web Conf.
,
70
, p.
11003
. 10.1051/matecconf/20167011003
6.
Etutu
,
T. G.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2016
, “
Gasification of Municipal Solid Waste in a Downdraft Gasifier: Analysis of Tar Formation
,”
Songklanakarin J. Sci. Technol.
,
38
(
2
), pp.
221
228
.
7.
Chalermcharoenrat
,
S.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2015
, “
Optimization of Combustion Behaviour and Producer Gas Quality From Reclaimed Landfill Through Highly Densify RDF-Gasification
,”
Energy Procedia
,
79
, pp.
321
326
. 10.1016/j.egypro.2015.11.496
8.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
9.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
041001
. 10.1115/1.4007660
10.
Gupta
,
A. K.
,
1996
, “
Thermal Destruction of Solid Wastes
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
187
192
. 10.1115/1.2793861
11.
Chiemchaisri
,
C.
,
Charnnok
,
B.
, and
Visvanathan
,
C.
,
2009
, “
Recovery of Wastes From Dumpsite as RDF and Its Utilization in Small Gasification System
,”
Bioresour. Technol.
,
101
(
5
), pp.
1522
1527
. 10.1016/j.biortech.2009.08.061
12.
Rao
,
M. S.
,
Singh
,
S. P.
,
Sodha
,
M. S.
,
Dubey
,
A. K.
, and
Shyam
,
M.
,
2004
, “
Stoichiometric, Mass, Energy and Exergy Balance Analysis of Countercurrent Fixed-Bed Gasification of Post-Consumer Residues
,”
Biomass Bioenergy
,
27
(
2
), pp.
155
171
. 10.1016/j.biombioe.2003.11.003
13.
Ouadi
,
M.
,
Brammer
,
J. G.
,
Kay
,
M.
, and
Hornung
,
A.
,
2013
, “
Fixed Bed Downdraft Gasification of Paper Industry Wastes
,”
Appl. Energy
,
103
, pp.
692
699
. 10.1016/j.apenergy.2012.10.038
14.
Kungkajit
,
C.
,
Prateepchaikul
,
G.
, and
Kaosol
,
T.
,
2015
, “
Influence of Plastic Waste for Refuse-Derived Fuel on Downdraft Gasification
,”
Energy Procedia
,
79
, pp.
528
535
. 10.1016/j.egypro.2015.11.529
15.
Khosasaeng
,
T.
, and
Suntivarakorn
,
R.
,
2017
, “
Effect of Equivalence Ratio on an Efficiency of Single Throat Downdraft Gasifier Using RDF From Municipal Solid Waste
,”
Energy Procedia
,
138
, pp.
313
318
. 10.1016/j.egypro.2017.10.066
16.
Bhoi
,
P. R.
,
Huhnke
,
R.
,
Ajay
,
K.
,
Indrawan
,
N.
, and
Thapa
,
S.
,
2018
, “
Co-Gasification of Municipal Solid Waste and Biomass in a Commercial Scale Downdraft Gasifier
,”
Renew. Energy
,
163
, pp.
513
518
. 10.1016/j.energy.2018.08.151
17.
Ayol
,
A.
,
Yurdakos
,
O. T.
, and
Gurgen
,
A.
,
2019
, “
Investigation of Municipal Sludge Gasification Potential: Gasification Characteristics of Dried Sludge in a Pilot-Scale Downdraft Fixed Bed Gasifier
,”
Int. J. Hydrogen Energy
,
44
(
32
), pp.
17397
17410
. 10.1016/j.ijhydene.2019.01.014
18.
Olgun
,
H.
,
Ozdogan
,
S. Z.
, and
Yinesor
,
G.
,
2011
, “
Results With a Bench Scale Downdraft Biomass Gasifier for Agricultural and Forestry Residues
,”
Biomass Bioenergy
,
35
(
1
), pp.
572
580
. 10.1016/j.biombioe.2010.10.028
19.
Shrivastava
,
V.
,
Jha
,
A. K.
,
Wamankar
,
A. K.
, and
Murugan
,
S.
,
2013
, “
Performance and Emission Studies of a CI Engine Coupled With Gasifier Running in Dual Fuel Mode
,”
Procedia Eng.
,
51
, pp.
600
608
. 10.1016/j.proeng.2013.01.085
20.
Bhoi
,
P.
,
Huhnke
,
R.
,
Kumar
,
A.
,
Thapa
,
S.
, and
Indrawan
,
N.
,
2018
, “
Scale-Up of a Downdraft Gasifier System for Commercial Scale Mobile Power Generation
,”
Renew. Energy
,
118
, pp.
25
33
. 10.1016/j.renene.2017.11.002
21.
Tanczuk
,
M.
,
Junga
,
R.
,
Werle
,
S.
,
Chabinski
,
M.
, and
Ziolkowski
,
L.
,
2019
, “
Experimental Analysis of the Fixed Bed Gasification Process of the Mixtures of the Chicken Manure With Biomass
,”
Renew. Energy
,
136
, pp.
1055
1063
. 10.1016/j.renene.2017.05.074
22.
Villetta
,
M. L.
,
Costa
,
M.
,
Cirillo
,
D.
,
Massarotti
,
N.
, and
Vanoli
,
L.
,
2018
, “
Performance Analysis of a Biomass Powered Micro-Cogeneration System Based on Gasification and Syngas Conversion in a Reciprocating Engine
,”
Energy Convers. Manage.
,
175
, pp.
33
48
. 10.1016/j.enconman.2018.08.017
23.
Kamble
,
P.
,
Khan
,
Z.
, and
Watson
,
I.
,
2019
, “
Biomass Gasification of Hybrid Seed Miscanthus in Glasgow’s Downdraft Gasifier Testbed System
,”
Energy Procedia
,
158
, pp.
1174
1181
. 10.1016/j.egypro.2019.01.303
24.
Vonk
,
G.
,
Piriou
,
B.
,
Santos
,
P. F.
,
Wolbert
,
D.
, and
Vaitilingom
,
G.
,
2019
, “
Comparative Analysis of Wood and Solid Recovered Fuels Gasification in a Downdraft Fixed Bed Reactor
,”
Waste Manage.
,
85
, pp.
106
120
. 10.1016/j.wasman.2018.12.023
25.
Krook
,
J.
,
Svensson
,
N.
, and
Eklund
,
M.
,
2012
, “
Landfill Mining: A Critical Review of Two Decades of Research
,”
Waste Manage.
,
32
(
3
), pp.
513
520
. 10.1016/j.wasman.2011.10.015
26.
Prechthai
,
T.
,
Padmasri
,
M.
, and
Visvanathan
,
C.
,
2008
, “
Quality Assessment of Mined MSW From an Open Dumpsite for Recycling Potential
,”
Resour. Conserv. Recycl.
,
53
(
1–2
), pp.
70
78
. 10.1016/j.resconrec.2008.09.002
27.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2020
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
. 10.1115/1.4044193
28.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Niedzwiecki
,
L.
,
Kowal
,
M.
, and
Krochmalny
,
K.
,
2020
, “
Gasification of Torrefied Sewage Sludge With the Addition of Calcium Carbonate
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070910
. 10.1115/1.4046140
29.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
,
2006
, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
179
185
. 10.1115/1.2134733
30.
Abdul Salam
,
P.
, and
Bhattacharya
,
S. C.
,
2006
, “
A Comparative Study of Charcoal Gasification in Two Type of Spouted Bed Reactors
,”
Energy
,
31
(
2–3
), pp.
228
243
. 10.1016/j.energy.2005.01.004
31.
He
,
M.
,
Hu
,
Z.
,
Xiao
,
B.
,
Li
,
J.
,
Guo
,
X.
,
Luo
,
S.
,
Yang
,
F.
,
Feng
,
Y.
,
Yang
,
G.
, and
Liu
,
S.
,
2009
, “
Hydrogen-Rich Gas From Catalytic Steam Gasification of Municipal Solid Waste
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
195
203
. 10.1016/j.ijhydene.2008.09.070
32.
Aydin
,
E. S.
,
Yucel
,
O.
, and
Sadikoglu
,
H.
,
2019
, “
Experimental Study on Hydrogen-Rich Syngas Production via Gasification of Pine Cone Particles and Wood Pellets in a Fixed Bed Downdraft Gasifier
,”
Int. J. Hydrogen Energy
,
44
(
32
), pp.
17389
17396
. 10.1016/j.ijhydene.2019.02.175
33.
Highman
,
C.
, and
Burgt
,
M.
,
2003
,
Gassification
,
Elsevier
,
New York
.
34.
Knoef
,
H. A. M.
,
2005
,
Handbook Biomass Gassification
,
BTC Biomass Technology Group
,
The Netherlands
.
35.
Laohalidanond
,
K.
,
2008
, “
Theoretische Untersuchungen und Thermodynamische Modellierungen der Biomassevergasung und der Fischer-Tropsch-Synthese zur Herstellung von Dieselkohlenwasserstoffen aus Thailändischen Biomassen
,”
Dissertation
,
RWTH Aachen
.
36.
Yonghong
,
N.
,
Fenftao
,
H.
,
Yisheng
,
C.
,
Yuanli
,
L.
, and
Li
,
W.
,
2016
, “
Experimental Study on Steam Gasification of Pine Particles for Hydrogen-Rich Gas
,”
J. Energy Inst.
,
90
, pp.
1
10
. 10.1016/j.joei.2016.07.006
You do not currently have access to this content.