Abstract

Di-n-butyl ether (DBE), a promising lignocellulosic biofuel, has been suggested as a potential alternative fuel for compression ignition engines. In this study, the spray auto-ignition characteristics of diesel/DBE blends were experimentally measured on a constant volume combustion chamber. Time-resolved pressure traces and heat release rates in fuel spray combustion were measured at changed fuel blending fractions, ambient temperatures, and oxygen concentrations. Further, ignition delay and combustion delay that evaluates fuel spray ignition tendency were derived and compared for different test blends. Experimental results indicated that fuel spray ignition tendency is promoted with DBE addition, evidenced by the advanced pressure rise and heat release processes, and the shortened ignition and combustion delays. Peak heat release rates are fuel-dependent at high ambient oxygen concentrations since the relative fractions of the premixed and diffusive burns alter with changed DBE addition. However, as the oxygen concentration drops to 11%, fuel effects on the peak heat release rates become less noticeable. Reduced ambient oxygen concentration effectively extends fuel ignition and combustion delays, and typical two-stage pressure rises and heat releases are observed for all test blends, as the oxygen concentration drops to 11%.

References

References
1.
Bai
,
Z. W.
,
Wang
,
Z. Y.
,
Yu
,
G. Y.
,
Yang
,
Y. P.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. 10.1115/1.4041412
2.
Fan
,
Y. C.
,
Duan
,
Y. Z.
,
Han
,
D.
,
Qiao
,
X. Q.
, and
Huang
,
Z.
,
2019
, “
Influences of Isomeric Butanol Addition on Anti-Knock Tendency of Primary Reference Fuel and Toluene Primary Reference Fuel Gasoline Surrogates
,”
Int. J. Engine Res.
10.1177/1468087419850704
3.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
. 10.1115/1.4027898
4.
Yoon
,
S. H.
,
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2010
, “
Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042201
. 10.1115/1.4003177
5.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
. 10.1115/1.4001574
6.
Naik
,
S. N.
,
Goud
,
V. V.
,
Rout
,
P. K.
, and
Dalai
,
A. K.
,
2010
, “
Production of First and Second Generation Biofuels: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
578
597
. 10.1016/j.rser.2009.10.003
7.
Antizar-Ladislao
,
B.
, and
Turrion-Gomez
,
J. L.
,
2008
, “
Second-generation Biofuels and Local Bioenergy System. Biofuels
,”
Bioproducts Biorefining
,
2
(
5
), pp.
455
469
. 10.1002/bbb.97
8.
Moharamian
,
A.
,
Soltani
,
S.
,
Rosen
,
M. A.
, and
Mahmoudi
,
S. M. S.
,
2018
, “
Advanced Exergy and Advanced Exergoeconomic Analyses of Biomass and Natural gas Fired Combined Cycles with Hydrogen Production
,”
Appl. Therm. Eng.
,
134
, pp.
1
11
. 10.1016/j.applthermaleng.2018.01.103
9.
Zinoviev
,
S.
,
Müller-Langer
,
F.
,
Das
,
P.
,
Bertero
,
N.
,
Fornasiero
,
P.
,
Kaltschmitt
,
M.
,
Centi
,
G.
, and
Miertus
,
S.
,
2010
, “
Next-Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues
,”
ChemSusChem
,
3
(
10
), pp.
1106
1133
. 10.1002/cssc.201000052
10.
Sims
,
R. E. H.
,
Mabee
,
W.
,
Saddler
,
J. N.
, and
Taylor
,
M.
,
2010
, “
An Overview of Second Generation Biofuel Technologies
,”
Bioresour. Technol.
,
101
(
6
), pp.
1570
1580
. 10.1016/j.biortech.2009.11.046
11.
Bhatia
,
S. K.
,
Kim
,
S.-H.
,
Yoon
,
J.-J.
, and
Yang
,
Y.-H.
,
2017
, “
Current Status and Strategies for Second Generation Biofuel Production Using Microbial Systems
,”
Energy Convers. Manage.
,
148
, pp.
1142
1156
. 10.1016/j.enconman.2017.06.073
12.
Yanai
,
T.
,
Han
,
X. Y.
,
Reader
,
G. T.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2015
, “
Preliminary Investigation of Direct Injection Neat n-Butanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012205
. 10.1115/1.4028519
13.
Raud
,
M.
,
Kikas
,
T.
,
Sippula
,
O.
, and
Shurpali
,
N. J.
,
2019
, “
Potentials and Challenges in Lignocellulosic Biofuel Production Technology
,”
Renewable Sustainable Energy Rev.
,
111
, pp.
44
56
. 10.1016/j.rser.2019.05.020
14.
Yoo
,
C. G.
,
Meng
,
X. Z.
,
Pu
,
Y. Q.
, and
Ragauskas
,
A. J.
,
2020
, “
The Critical Role of Lignin in Lignocellulosic Biomass Conversion and Recent Pretreatment Strategies: A Comprehensive Review
,”
Bioresour. Technol.
,
301
, p.
122784
.
15.
Yan
,
K.
,
Wu
,
G. S.
,
Lafleur
,
T.
, and
Jarvis
,
C.
,
2014
, “
Production, Properties and Catalytic Hydrogenation of Furfural to Fuel Additives and Value-Added Chemicals
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
663
676
. 10.1016/j.rser.2014.07.003
16.
Melin
,
K.
, and
Hurme
,
M.
,
2010
, “
Evaluation of Lignocellulosic Biomass Upgrading Routes to Fuels and Chemicals
,”
Cellul. Chem. Technol.
,
44
(
4–6
), pp.
117
137
.
17.
Janssen
,
A. J.
,
Kremer
,
F. W.
,
Baron
,
J. H.
,
Muether
,
M.
,
Pischinger
,
S.
, and
Klankermayer
,
J.
,
2011
, “
Tailor-Made Fuels From Biomass for Homogeneous Low-Temperature Diesel Combustion
,”
Energy Fuels
,
25
(
10
), pp.
4734
4744
. 10.1021/ef2010139
18.
Gao
,
G. X.
,
Yuan
,
Z. L.
,
Zhou
,
A. P.
,
Liu
,
S. H.
, and
Wei
,
Y. J.
,
2013
, “
Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), pp.
422021
422025
.
19.
Mack
,
J. H.
,
Flowers
,
D. L.
,
Buchholz
,
B. A.
, and
Dibble
,
R. W.
,
2005
, “
Investigation of HCCI Combustion of Diethyl Ether and Ethanol Mixtures Using Carbon 14 Tracing and Numerical Simulations
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2693
2700
. 10.1016/j.proci.2004.08.136
20.
Beeckmann
,
J.
,
Aye
,
M. M.
,
Gehmlich
,
R. K.
, and
Peters
,
N.
(
2010
).
Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel
. SAE Technical Paper 2010-01-1502.
21.
Guan
,
L.
,
Tang
,
C. L.
,
Yang
,
K.
,
Mo
,
J.
, and
Huang
,
Z. H.
,
2015
, “
Effect of di-n-Butyl Ether Blending with Soybean-Biodiesel on Spray and Atomization Characteristics in a Common-Rail Fuel Injection System
,”
Fuel
,
140
, pp.
116
125
. 10.1016/j.fuel.2014.09.104
22.
Fu
,
W.
,
Li
,
F. Y.
,
Meng
,
K. S.
,
Liu
,
Y. J.
,
Shi
,
W. D.
, and
Lin
,
Q. Z.
,
2019
, “
Experiment and Analysis of Spray Characteristics of Biodiesel Blending with di-n-Butyl Ether in a Direct Injection Combustion Chamber
,”
Energy
,
185
, pp.
77
89
. 10.1016/j.energy.2019.06.069
23.
Miyamoto
,
N.
,
Ogawa
,
H.
, and
Nabi
,
M. N.
,
2000
, “
Approaches to Extremely low Emissions and Efficient Diesel Combustion with Oxygenated Fuels
,”
Int. J. Engine Res.
,
1
(
1
), pp.
71
85
. 10.1243/1468087001545272
24.
Heuser
,
B.
,
Mauermann
,
P.
,
Wankhade
,
R.
,
Kremer
,
F.
, and
Pischinger
,
S.
,
2015
, “
Combustion and Emission Behavior of Linear C8-Oxygenates
,”
Int. J. Engine Res.
,
16
(
5
), pp.
627
638
. 10.1177/1468087415594951
25.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Villalta
,
D.
,
Zubel
,
M.
, and
Pischinger
,
S.
,
2018
, “
Potential of 1-Octanol and di-n-Butyl Ether (DNBE) to Improve the Performance and Reduce the Emissions of a Direct Injected Compression Ignition Diesel Engine
,”
Energy Convers. Manage.
,
177
, pp.
563
571
. 10.1016/j.enconman.2018.10.009
26.
Cai
,
L. M.
,
Sudholt
,
A.
,
Lee
,
D. J.
,
Egolfopoulos
,
F. N.
,
Pitsch
,
H.
,
Westbrook
,
C. K.
, and
Sarathy
,
S. M.
,
2014
, “
Chemical Kinetic Study of a Novel Lignocellulosic Biofuel: Di-n-Butyl Ether Oxidation in a Laminar Flow Reactor and Flames
,”
Combust. Flame
,
161
(
3
), pp.
798
809
. 10.1016/j.combustflame.2013.10.003
27.
Thion
,
S.
,
Togbé
,
C.
,
Serinyel
,
Z.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2017
, “
A Chemical Kinetic Study of the Oxidation of Dibutyl-Ether in a jet-Stirred Reactor
,”
Combust. Flame
,
185
, pp.
4
15
. 10.1016/j.combustflame.2017.06.019
28.
Guan
,
L.
,
Tang
,
C. L.
,
Yang
,
K.
,
Mo
,
J.
, and
Huang
,
Z. H.
,
2014
, “
Experimental and Kinetic Study on Ignition Delay Times of Di-n-Butyl Ether at High Temperatures
,”
Energy Fuels
,
28
(
8
), pp.
5489
5496
. 10.1021/ef500873e
29.
Wullenkord
,
J.
,
Tran
,
L.-S.
,
Böttchers
,
J.
,
Graf
,
I.
, and
Kohse-Höinghaus
,
K.
,
2018
, “
A Laminar Flame Study on di-n-Butyl Ether as a Potential Biofuel Candidate
,”
Combust. Flame
,
190
, pp.
36
49
. 10.1016/j.combustflame.2017.11.006
30.
Lapuerta
,
M.
,
Hernández
,
J. J.
,
Fernández-Rodríguez
,
D.
, and
Cova-Bonillo
,
A.
,
2017
, “
Autoignition of Blends of n-Butanol and Ethanol with Diesel or Biodiesel Fuels in a Constant-Volume Combustion Chamber
,”
Energy
,
118
, pp.
613
621
. 10.1016/j.energy.2016.10.090
31.
Kang
,
D.
,
Kalaskar
,
V.
,
Kim
,
D.
,
Martz
,
J.
,
Violi
,
A.
, and
Boehman
,
A.
,
2016
, “
Experimental Study of Autoignition Characteristics of Jet-A Surrogates and Their Validation in a Motored Engine and a Constant-Volume Combustion Chamber
,”
Fuel
,
184
, pp.
565
580
. 10.1016/j.fuel.2016.07.009
32.
Duan
,
Y. Z.
,
Liu
,
W.
,
Liang
,
X.
, and
Han
,
D.
,
2020
, “
Effects of Branch Structure of Alkylbenzenes on Spray Auto-Ignition of n-Decane and Alkylbenzenes Blends
,”
Int. J. Engine Res.
10.1177/1468087420914716
33.
Han
,
D.
,
Zhai
,
J. Q.
, and
Huang
,
Z.
,
2019
, “
Autoignition of n-Hexane, Cyclohexane, and Methylcyclohexane in a Constant Volume Combustion Chamber
,”
Energy Fuels
,
33
(
4
), pp.
3576
3583
. 10.1021/acs.energyfuels.9b00003
34.
Han
,
D.
,
Duan
,
Y. Z.
, and
Zhai
,
J. Q.
,
2019
, “
Autoignition Comparison of n-Dodecane/Benzene and n-Dodecane/Toluene Blends in a Constant Volume Combustion Chamber
,”
Energy Fuels
,
33
(
6
), pp.
5647
5654
. 10.1021/acs.energyfuels.9b00451
35.
Yu
,
S. T.
,
Guo
,
Y. N.
,
Zhuo
,
B.
,
Liu
,
J. S.
, and
Yang
,
L.
,
2004
, “
Study on the Physical and Chemical Characteristics of Ethanol-Diesel Blend Fuels
,”
Chinese Internal Combustion Engine Engineering
,
26
(
6
), pp.
30
33
.
36.
ASTM international
. (
2014
)
ASTM D7668-14, Standard Test Method for Determination of Derived Cetane Number (DCN) of Diesel Fuel Oils Ignition Delay Using a Constant Volume Combustion Chamber Method
,
West Conshohocken
,
PA
.
37.
Beatrice
,
C.
,
Bertoli
,
C.
,
D’Alessio
,
J.
,
Giacomo
,
N. D.
,
Lazzaro
,
M.
, and
Massoli
,
P.
,
1996
, “
Experimental Characterization of Combustion Behaviour of New Diesel Fuels for Low Emission Engines
,”
Combust. Sci. Technol.
,
120
(
1–6
), pp.
335
355
. 10.1080/00102209608935580
38.
Woschni
,
G.
(
1967
).
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
.
SAE Technical Paper 670931
.
39.
Ren
,
Z.
,
Liu
,
W.
,
Huang
,
Z.
, and
Han
,
D.
,
2020
, “
Spray Auto-Ignition Behaviors of Diesel and Jet Fuel at Reduced Oxygen Environments
,”
Combust. Sci. Technol.
10.1080/00102202.2020.1774567
40.
Du
,
J. G.
,
Mohan
,
B.
,
Sim
,
J.
, and
Fang
,
T. G.
,
2020
, “
Auto-ignition Characteristics of High-Reactivity Gasoline Fuel Using a Gasoline Multi-Hole Injector
,”
Exp. Therm. Fluid. Sci.
,
112
, p.
109993
. 10.1016/j.expthermflusci.2019.109993
41.
Liang
,
X.
,
Zhong
,
A. H.
,
Sun
,
Z. Y.
, and
Han
,
D.
,
2019
, “
Autoignition of n-Heptane and Butanol Isomers Blends in a Constant Volume Combustion Chamber
,”
Fuel
,
254
, p.
115638
. 10.1016/j.fuel.2019.115638
42.
Zheng
,
Z. L.
,
Badawy
,
T.
,
Henein
,
N.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Energy Resour. Technol.
,
135
(
6
), p.
061501
. 10.1115/1.4023607
You do not currently have access to this content.