Abstract

Solar air heater is a promising, economically viable, and matured technology for space heating and drying applications. One of the primary reasons for the limited usage of a solar air heater in developing countries is the unavailability of continuous electricity supply. Although the solar air heater is theoretically passive, practically electrical energy is required to achieve a steady airflow. Therefore, the unreliability of electricity forces people to rely on firewood for heat during the cold weather, which has severe effects on health and climate change. In the present work, the potential of thermoelectric generators (TEGs) to meet the electrical energy requirement of a solar air heater is studied. Two configurations, each with three different numbers of stages of TEGs, are analyzed. The effect of the integration of TEGs on the thermal performance of solar air heater is analyzed alongside the comparison between the electrical energy required by solar air heaters and electrical energy generated upon the integration of TEGs. A numerical model is developed in matlab and validated using the experimental results. One of the designs meets the electrical energy requirement of the fan in a wide operational range but lowers the process heat generation by approximately 1–6.25%. The electrical energy generated by the other design falls short of demand posed by the system in most operating range. However, the thermal energy generation is marginally higher compared to that of the conventional solar air heater.

References

1.
Sokolova
,
A.
, and
Aksanli
,
B.
,
2019
, “
Demographical Energy Usage Analysis of Residential Buildings
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062003
. https://doi.org/10.1115/1.4042451
2.
Li
,
D. H. W.
,
Yang
,
L.
, and
Lam
,
J. C.
,
2013
, “
Zero Energy Buildings and Sustainable Development Implications—A Review
,”
Energy
,
54
, pp.
1
10
. 10.1016/j.energy.2013.01.070
3.
Kim
,
D.
,
Cho
,
H.
, and
Luck
,
R.
,
2019
, “
Potential Impacts of Net-Zero Energy Buildings With Distributed Photovoltaic Power Generation on the U.S. Electrical Grid
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062005
. 10.1115/1.4042407
4.
Rajarajeswari
,
K.
, and
Sreekumar
,
A.
,
2016
, “
Matrix Solar Air Heaters—A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
704
712
. 10.1016/j.rser.2015.12.127
5.
Sharma
,
A.
,
Chen
,
C. R.
, and
Vu Lan
,
N.
,
2009
, “
Solar-Energy Drying Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1185
1210
. 10.1016/j.rser.2008.08.015
6.
Alkilani
,
M. M.
,
Sopian
,
K.
,
Alghoul
,
M. A.
,
Sohif
,
M.
, and
Ruslan
,
M. H.
,
2011
, “
Review of Solar Air Collectors With Thermal Storage Units
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1476
1490
. 10.1016/j.rser.2010.10.019
7.
Larson
,
T. V.
, and
Koenig
,
J. Q.
,
1994
, “
Wood Smoke : Emissions and Noncancer Respiratory Effects
,”
Ann. Rev. Public Health
,
15
(
1
), pp.
133
156
.
8.
United Nations
,
2018
, Energy Statistics Pocketbook. https://unstats.un.org/unsd/energystats/pubs/documents/2018pb-web.pdf
9.
Wuebbles
,
D. J.
, and
Jain
,
A. K.
,
2001
, “
Concerns About Climate Change and the Role of Fossil Fuel Use
,”
Fuel Process. Technol.
,
71
(
1–3
), pp.
99
119
. 10.1016/S0378-3820(01)00139-4
10.
Wong
,
K. V.
,
2015
, “
Energy–Water–Food Nexus and Recommendations for Security
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
034701
. 10.1115/1.4028773
11.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
,
2012
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
. https://doi.org/10.1115/1.4007360
12.
Sainthiya
,
H.
, and
Beniwal
,
N. S.
,
2020
, “
Thermal Modeling and Performance Analysis of a Hybrid Photovoltaic/Thermal System Under Combined Surface Water Cooling in Winter Season: An Experimental Approach
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012102
. 10.1115/1.4045082
13.
Baljit
,
S. S. S.
,
Chan
,
H. Y.
, and
Sopian
,
K.
,
2016
, “
Review of Building Integrated Applications of Photovoltaic and Solar Thermal Systems
,”
J. Clean. Prod.
,
137
, pp.
677
689
. 10.1016/j.jclepro.2016.07.150
14.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
379
. 10.1016/j.apenergy.2009.06.037
15.
Soltani
,
S.
,
Kasaeian
,
A.
,
Sokhansefat
,
T.
, and
Shafii
,
M. B.
,
2018
, “
Performance Investigation of a Hybrid Photovoltaic/Thermoelectric System Integrated With Parabolic Trough Collector
,”
Energy Convers. Manage.
,
159
(
September 2017
), pp.
371
380
. 10.1016/j.enconman.2017.12.091
16.
Al-Nimr
,
M. A.
,
Tashtoush
,
B. M.
,
Khasawneh
,
M. A.
, and
Al-Keyyam
,
I.
,
2017
, “
A Hybrid Concentrated Solar Thermal Collector/Thermo-Electric Generation System
,”
Energy
,
134
, pp.
1001
1012
. 10.1016/j.energy.2017.06.093
17.
Chávez-Urbiola
,
E. A.
,
Vorobiev
,
Y. V.
, and
Bulat
,
L. P.
,
2012
, “
Solar Hybrid Systems With Thermoelectric Generators
,”
Sol. Energy
,
86
(
1
), pp.
369
378
. 10.1016/j.solener.2011.10.020
18.
Date
,
A.
,
Date
,
A.
,
Dixon
,
C.
, and
Akbarzadeh
,
A.
,
2014
, “
Theoretical and Experimental Study on Heat Pipe Cooled Thermoelectric Generators With Water Heating Using Concentrated Solar Thermal Energy
,”
Sol. Energy
,
105
, pp.
656
668
. 10.1016/j.solener.2014.04.016
19.
Li
,
C.
,
Zhang
,
M.
,
Miao
,
L.
,
Zhou
,
J.
,
Kang
,
Y. P.
,
Fisher
,
C. A. J.
,
Ohno
,
K.
,
Shen
,
Y.
, and
Lin
,
H.
,
2014
, “
Effects of Environmental Factors on the Conversion Efficiency of Solar Thermoelectric Co-Generators Comprising Parabola Trough Collectors and Thermoelectric Modules Without Evacuated Tubular Collector
,”
Energy Convers. Manage.
,
86
, pp.
944
951
. 10.1016/j.enconman.2014.06.010
20.
Zhang
,
M.
,
Miao
,
L.
,
Kang
,
Y. P.
,
Tanemura
,
S.
,
Fisher
,
C. A. J.
,
Xu
,
G.
,
Li
,
C. X.
, and
Fan
,
G. Z.
,
2013
, “
Efficient, Low-Cost Solar Thermoelectric Cogenerators Comprising Evacuated Tubular Solar Collectors and Thermoelectric Modules
,”
Appl. Energy
,
109
, pp.
51
59
. 10.1016/j.apenergy.2013.03.008
21.
Lertsatitthanakorn
,
C.
,
Jamradloedluk
,
J.
,
Rungsiyopas
,
M.
,
Therdyothin
,
A.
, and
Soponronnarit
,
S.
,
2013
, “
Performance Analysis of a Thermoelectric Solar Collector Integrated With a Heat Pump
,”
J. Electron. Mater.
,
42
(
7
), pp.
2320
2325
. 10.1007/s11664-012-2414-x
22.
Miao
,
L.
,
Zhang
,
M.
,
Tanemura
,
S.
,
Tanaka
,
T.
,
Kang
,
Y. P.
, and
Xu
,
G.
,
2012
, “
Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector With Parabolic Trough Concentrator
,”
J. Electron. Mater.
,
41
(
6
), pp.
1759
1765
. 10.1007/s11664-012-2076-8
23.
Miao
,
L.
,
Kang
,
Y. P.
,
Li
,
C.
,
Tanemura
,
S.
,
Wan
,
C. L.
,
Iwamoto
,
Y.
,
Shen
,
Y.
, and
Lin
,
H.
,
2015
, “
Experimental Performance of a Solar Thermoelectric Cogenerator Comprising Thermoelectric Modules and Parabolic Trough Concentrator Without Evacuated Tube
,”
J. Electron. Mater.
,
44
(
6
), pp.
1972
1983
. 10.1007/s11664-015-3626-7
24.
Faddouli
,
A.
,
Labrim
,
H.
,
Fadili
,
S.
,
Hartiti
,
B.
,
Habchi
,
A.
,
Ertugrul
,
M.
,
Cavusoglu
,
B.
, and
Ntsoenzok
,
E.
,
2019
, “
Feasibility and Performance Investigation of a New Smart System Integrating Planar/Tubular Thermoelectric Generators With Solar Flat Plate Collector
,”
Energy Convers. Manage.
,
199
(
September
), p.
111980
. 10.1016/j.enconman.2019.111980
25.
Faddouli
,
A.
,
Labrim
,
H.
,
Fadili
,
S.
,
Habchi
,
A.
,
Hartiti
,
B.
,
Benaissa
,
M.
,
Hajji
,
M.
,
EZ-Zahraouy
,
H.
,
Ntsoenzok
,
E.
, and
Benyoussef
,
A.
,
2020
, “
Numerical Analysis and Performance Investigation of New Hybrid System Integrating Concentrated Solar Flat Plate Collector With a Thermoelectric Generator System
,”
Renewable Energy
,
147
, pp.
2077
2090
. 10.1016/j.renene.2019.09.130
26.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2011
, “
Modeling and Optimization of Hybrid Solar Thermoelectric Systems With Thermosyphons
,”
Sol. Energy
,
85
(
11
), pp.
2843
2855
. 10.1016/j.solener.2011.08.021
27.
Whillier
,
A.
,
1967
,
Application of Solar Energy
, A. Whillier,
ASHRAE
,
New York
.
28.
Watmuff
,
J. H.
,
Charters
,
W. W. S.
, and
Proctor
,
D.
,
1977
, “
Solar and Wind Induced External Coefficients for Solar Collectors
,”
Coop. Mediterr. pour l’Energie Sol.
,
2
, p.
56
.
29.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University Press
,
New York
.
30.
Colburn
,
A. P.
,
1933
, “
A Method of Correlating Forced Convection Heat Transfer Data and a Comparison With Fluid Friction
,”
Trans. Am. Inst. Chem. Eng.
,
29
, pp.
174
210
.
31.
Raihan Mohammad Siddique
,
A.
,
Kratz
,
F.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2019
, “
Energy Conversion by Nanomaterial-Based Trapezoidal-Shaped Leg of Thermoelectric Generator Considering Convection Heat Transfer Effect
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082001
. 10.1115/1.4042644
32.
Chen
,
G.
,
2011
, “
Theoretical Efficiency of Solar Thermoelectric Energy Generators
,”
J. Appl. Phys.
,
109
(
10
), p.
104908
.
33.
He
,
Z. Z.
,
2020
, “
A Coupled Electrical-Thermal Impedance Matching Model for Design Optimization of Thermoelectric Generator
,”
Appl. Energy
,
269
(
September 2019
), p.
115037
.
34.
Siddique
,
A. R. M.
,
Rabari
,
R.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2016
, “
Thermal Energy Harvesting From the Human Body Using Flexible Thermoelectric Generator (FTEG) Fabricated by a Dispenser Printing Technique
,”
Energy
,
115
, pp.
1081
1091
. 10.1016/j.energy.2016.09.087
35.
Fox
,
R. H.
,
McDonald
,
A. T.
,
Pritchard
,
P. J.
, and
Mitchell
,
J. W.
,
2015
,
Fluid Mechanics
,
Wiley
,
New York
.
You do not currently have access to this content.