Abstract

Stochastic reconstruction of digital core images is a vital part of digital core physics analysis, aiming to generate representative microstructure samples for sampling and uncertainty quantification analysis. This paper proposes a novel reconstruction method of the digital core of shale based on generative adversarial networks (GANs) with powerful capabilities of the generation of samples. GANs are a series of unsupervised generative artificial intelligence models that take the noise vector as an input. In this paper, the GANs with a generative and a discriminative network are created respectively, and the shale image with 45 nm/pixel preprocessed by the three-value-segmentation method is used as training samples. The generative network is used to learn the distribution of real training samples, and the discriminative network is used to distinguish real samples from synthetic ones. Finally, realistic digital core samples of shale are successfully reconstructed through the adversarial training process. We used the Fréchet inception distance (FID) and Kernel inception distance (KID) to evaluate the ability of GANs to generate real digital core samples of shale. The comparison of the morphological characteristics between them, such as the ratio of organic matter and specific surface area of organic matter, indicates that real and reconstructed samples are highly close. The results show that deep convolutional generative adversarial networks with full convolution properties can reconstruct digital core samples of shale effectively. Therefore, compared with the classical methods of reconstruction, the new reconstruction method is more promising.

References

References
1.
An
,
S.
,
Yao
,
J.
,
Yang
,
Y.
,
Zhang
,
W.
,
Zhao
,
J.
, and
Li
,
A.
,
2016
, “
The Microscale Analysis of Reverse Displacement Based on Digital Core
,”
J. Nat. Gas Sci. Eng.
,
48
, pp.
138
144
. 10.1016/j.jngse.2016.12.014
2.
Kong
,
Q.
,
Zhou
,
C.
,
Li
,
C.
, and
Hu
,
F.
,
2015
, “
Numerical Simulation Method of Digital Core Electrical Property and Its Development Orientations
,”
China Pet. Explor.
,
20
(
1
), pp.
69
77
.
3.
Fu
,
Q.
, and
Shan
,
Z.
,
2016
, “
FIB-SEM Dual-Beam System and its Partial Applications
,”
J. Chin. Electron Microsc. Soc.
,
35
(
1
), pp.
81
89
.
4.
Berg
,
C. F.
,
Lopez
,
O.
, and
Berland
,
H.
,
2017
, “
Industrial Applications of Digital Rock Technology
,”
J. Pet. Sci. Eng.
,
157
, pp.
131
147
. 10.1016/j.petrol.2017.06.074
5.
Ma
,
X.
,
Mou
,
J.
,
Lin
,
H.
,
Jiang
,
F.
,
Liu
,
K.
, and
Zhao
,
X.
,
2017
, “
Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042002
. 10.1115/1.4035909
6.
Zhao
,
W. D.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
7.
Li
,
S.
,
Li
,
S.
, and
Pang
,
W.
,
2020
, “
Description of Gas Hydrate Using Digital Core Technology
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062901
. https://doi.org/10.1115/1.4045533
8.
Bakke
,
S.
, and
Øren
,
P. E.
,
2013
, “
3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks
,”
SPE J.
,
2
(
02
), pp.
136
149
. 10.2118/35479-PA
9.
Yao
,
J.
,
Zhao
,
X.
,
Yi
,
Y.
, and
Jun
,
T.
,
2005
, “
The Current Situation and Prospect on Shale Digital Core Technology
,”
Oil Gas Recovery Technol.
,
12
(
6
), pp.
52
54
.
10.
Wu
,
S.
, and
Li
,
W.
,
2004
, “
Multiple-Point Geostatistics: Theory, Application and Perspective
,”
J. Palaeogeogr.
,
7
(
1
), pp.
137
144
.
11.
Wu
,
K.
,
Dijke
,
M. I. J. V.
,
Couples
,
G. D.
,
Jiang
,
Z.
,
Ma
,
J.
,
Sorbie
,
K. S.
,
Crawford
,
J.
,
Young
,
I.
, and
Zhang
,
X.
,
2006
, “
3D Stochastic Modelling of Heterogeneous Porous Media-Applications to Reservoir Rocks
,”
Transport in Porous Media
,
65
(
3
), pp.
443
467
. 10.1007/s11242-006-0006-z
12.
Wu
,
K.
,
Nunan
,
N.
,
Crawford
,
J. W.
,
Young
,
I. M.
, and
Ritz
,
K.
,
2004
, “
An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure
,”
Soil Sci. Soc. Am. J.
,
68
(
2
), pp.
346
351
. 10.2136/sssaj2004.3460
13.
Pang
,
W.
,
2007
, “
Reconstruction of Digital Shale Cores Using Multi-point Geostatistics
,”
Nat. Gas Ind.
,
37
(
9
), pp.
71
78
.
14.
Zhang
,
N.
,
Sun
,
Q.
,
Fadlelmula
,
M.
,
Rahman
,
A.
, and
Wang
,
Y.
,
2018
, “
A New Method of Porous Space Reconstruction Using Multipoint Histogram Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032909
. 10.1115/1.4038379
15.
Zhang
,
T.
,
Du
,
Y.
,
Huang
,
T.
, and
Li
,
X.
,
2016
, “
Stochastic Simulation of Geological Data Using Isometric Mapping and Multiple-Point Geostatistics With Data Incorporation
,”
J. Appl. Geophys.
,
125
, pp.
14
25
. 10.1016/j.jappgeo.2015.12.005
16.
Lin
,
W.
,
Li
,
X.
,
Yang
,
Z.
,
Xiong
,
S.
,
Luo
,
Y.
, and
Zhao
,
X.
,
2020
, “
Modeling of 3D Rock Porous Media by Combining X-ray CT and Markov Chain Monte Carlo
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
013001
. https://doi.org/10.1115/1.4045461
17.
Okabe
,
H.
, and
Blunt
,
M. J.
,
2007
, “
Pore Space Reconstruction of Vuggy Carbonates Using Microtomography and Multiple-Point Statistics
,”
Water Resour. Res.
,
43
(
12
), pp.
3
7
. 10.1029/2006WR005680
18.
Mosser
,
L.
,
Dubrule
,
O.
, and
Blunt
,
M. J.
,
2017
, “
Reconstruction of Three-Dimensional Porous Media Using Generative Adversarial Neural Networks
,”
Phys. Rev. E
,
96
(
043
), p.
309
.
19.
Mahmud
,
K.
,
Mariethoz
,
G.
,
Caers
,
J.
,
Tahmasebi
,
P.
, and
Baker
,
A.
,
2014
, “
Simulation of Earth Textures by Conditional Image Quilting
,”
Water Resour. Res.
,
50
(
4
), pp.
3088
3107
. 10.1002/2013WR015069
20.
Zahner
,
T.
,
Lochbühler
,
T.
,
Mariethoz
,
G.
, and
Linde
,
N.
,
2016
, “
Image Synthesis With Graph Cuts: A Fast Model Proposal Mechanism in Probabilistic Inversion
,”
Geophys. J. Int.
,
204
(
2
), pp.
1179
1190
. 10.1093/gji/ggv517
21.
Li
,
X.
,
Mariethoz
,
G.
,
Lu
,
D. T.
, and
Linde
,
N.
,
2016
, “
Patch-Based Iterative Conditional Geostatistical Simulation Using Graph Cuts
,”
Water Resour. Res.
,
52
(
8
), pp.
6297
6320
. 10.1002/2015WR018378
22.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2015
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
Paper Presented at the International Conference on Learning Representations
,
San Diego, CA
, May
7–9
.
23.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Paper Presented at the International Conference on Advances in Neural Information Processing Systems
,
Montreal, Quebec
,
Dec. 8–13
,
Page No. 2672-2680
.
24.
Mao
,
X.
,
Li
,
Q.
,
Xie
,
H.
,
Lau
,
R. Y.
,
Wang
,
Z.
, and
Smolley
,
S. P.
,
2017
, “
Least Squares Generative Adversarial Networks
,”
Paper Presented at the International Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
.
25.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein GAN
,”
Paper Presented at the International Conference on Machine Learning
,
Sydney, Australia
, Aug.
6–11
.
26.
Mosser
,
L.
,
Dubrule
,
O.
, and
Blunt
,
M. J.
,
2017
, “
Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks
,”
Transp. Porous Media
,
125
(
1
), pp.
81
103
. 10.1007/s11242-018-1039-9
27.
Zha
,
W.
,
Li
,
X.
,
Xing
,
Y.
,
He
,
L.
, and
Li
,
D.
,
2020
, “
Reconstruction of Shale Image Based on Wasserstein Generative Adversarial Networks With Gradient Penalty
,”
Adv. Geo Energy Res.
,
4
(
1
), pp.
107
114
. 10.26804/ager.2020.01.10
28.
Dabov
,
K.
,
Foi
,
A.
,
Katkovnik
,
V.
, and
Egiazarian
,
K.
,
2007
, “
Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
,”
IEEE Trans. Image Process.
,
16
(
8
), pp.
2080
2095
. 10.1109/TIP.2007.901238
29.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1929
1958
.
30.
Huang
,
G.
,
Yuan
,
Y.
,
Xu
,
Q.
,
Guo
,
C.
,
Sun
,
Y.
,
Wu
,
F.
, and
Weinberger
,
K. Q.
,
2018
,
An Empirical Study on Evaluation Metrics of Generative Adversarial Networks
,
arXiv: Learning
.
31.
Heusel
,
M.
,
Ramsauer
,
H.
,
Unterthiner
,
T.
,
Nessler
,
B.
, and
Hochreiter
,
S.
,
2017
, “
Gans Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
,”
Paper Presented at the International Conference on Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
32.
Binkowski
,
M.
,
Sutherland
,
D. J.
,
Arbel
,
M.
, and
Gretton
,
A.
,
2018
, “
Demystifying MMD Gans
,”
Paper Presented at the International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
.
33.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
JMLR
,
12
, pp.
2825
2830
.
34.
Mecke
,
K. R.
,
2000
, “
Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics
,”
Lect. Notes Phys.
,
554
, pp.
111
184
. 10.1007/3-540-45043-2_6
You do not currently have access to this content.