Abstract

Wind turbine technology in the world has been developed by continuously improving turbine performance, design, and efficiency. Over the last 40 years, the rated capacity and dimension of the commercial wind turbines have increased dramatically, so the energy cost has declined significantly, and the industry has moved from an idealistic position to an acknowledged component of the power generation industry. For this reason, a thorough examination of the aerodynamic rotor performance of a modern large-scale wind turbine working on existing onshore wind farms is critically important to monitor and control the turbine performance and also for forecasting turbine power. This study focuses on the aerodynamic rotor performance of a 3300-kW modern commercial large-scale wind turbine operating on an existing onshore wind farm based on the measurement data. First, frequency distributions of wind speeds and directions were obtained using measurements over one year. Then, wind turbine parameters such as free-stream wind speed (U), far wake wind speed (UW), axial flow induction factor (a), wind turbine power coefficient (CP), tangential flow induction factor (a′), thrust force coefficient (CT), thrust force (T), tip-speed ratio (λ), and flow angle (ϕ) were calculated using the measured rotor disc wind speed (UD), atmospheric air temperature (Tatm), turbine rotational speed (Ω), and turbine power output (P) parameters. According to the results obtained, the maximum P, CP, CT, T, and Ω were calculated as approximately 3.3 MW, 0.45, 0.6, 330 kN, and 12.9 rpm, respectively, while the optimum λ, ϕ, U∞, and Ω for the maximum CP were determined as 7.5–8.5, 6–6.3°, 5–10 m/s, and 6–10 rpm, respectively. These calculated results can contribute to assessing the economic and technical feasibility of modern commercial large-scale wind turbines and supporting future developments in wind energy and turbine technology.

References

1.
Bilgili
,
M.
,
Ozbek
,
A.
,
Sahin
,
B.
, and
Kahraman
,
A.
,
2015
, “
An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
323
334
. 10.1016/j.rser.2015.04.148
2.
Korompili
,
A.
,
Wu
,
Q.
, and
Zhao
,
H.
,
2016
, “
Review of VSC HVDC Connection for Offshore Wind Power Integration
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1405
1414
. 10.1016/j.rser.2016.01.064
3.
Emmanouil
,
G.
,
Galanis
,
G.
,
Kalogeri
,
C.
,
Zodiatis
,
G.
, and
Kallos
,
G.
,
2016
, “
10-Year High Resolution Study of Wind, Sea Waves and Wave Energy Assessment in the Greek Offshore Areas
,”
Renewable Energy
,
90
, pp.
399
419
. 10.1016/j.renene.2016.01.031
4.
Soderholm
,
P.
, and
Pettersson
,
M.
,
2011
, “
Offshore Wind Power Policy and Planning in Sweden
,”
Energy Policy
,
39
(
2
), pp.
518
525
. 10.1016/j.enpol.2010.05.065
5.
IRENA
.
Renewable Energy Benefits: Measuring the Economic
,”
International Renewable Energy Agency
, http://www.irena.org, Accessed November 6, 2016.
6.
IEA
.
Energy Technology Perspectives
,”
International Energy Agency
, https://www.iea.org, Accessed July 14, 2010.
7.
Wang
,
S.
, and
Wang
,
S.
,
2015
, “
Impacts of Wind Energy on Environment: A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
437
443
. 10.1016/j.rser.2015.04.137
8.
Jones
,
C. R.
, and
Richard Eiser
,
J.
,
2010
, “
Understanding ‘Local’ Opposition to Wind Development in the UK: How Big Is a Backyard?
,”
Energy Policy
,
38
(
6
), pp.
3106
3117
. 10.1016/j.enpol.2010.01.051
9.
GWEC, Global Wind Energy Council
,
2019
,
Global Wind Report 2018
,
GWEC
,
1040 Brussels, Belgium
.
10.
EWEA, European Wind Energy Association
,”
2018
,
Wind Energy in Europe
, https://windeurope.org/about-wind/statistics/european/
11.
WE, Wind Europe
,”
Wind in Power 2018, Annual Combined Onshore and Offshore Wind Energy Statistics
, https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2018.pdf
12.
McKenna
,
R.
,
Leye
,
P. O.
, and
Fichtner
,
W.
,
2016
, “
Key Challenges and Prospects for Large Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1212
1221
. 10.1016/j.rser.2015.09.080
13.
REN21, Renewable Energy Policy Network for the 21st Century
,
2019
,
Global Status Report 2018
,
REN21
,
75015 Paris, France
.
14.
Cooney
,
C.
,
Byrne
,
R.
,
Lyons
,
W.
, and
O’Rourke
,
F.
,
2017
, “
Performance Characterization of a Commercial-Scale Wind Turbine Operating in an Urban Environment, Using Real Data
,”
Energy for Sustainable Development
,
36
, pp.
44
54
. 10.1016/j.esd.2016.11.001
15.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained Theory, Design and Application
, 2nd ed.,
John Wiley & Sons, Ltd.
,
Chichester, UK
.
16.
Kishinami
,
K.
,
Taniguchi
,
H.
,
Suzuki
,
J.
,
Ibano
,
H.
,
Kazunou
,
T.
, and
Turuhami
,
M.
,
2005
, “
Theoretical and Experimental Study on the Aerodynamic Characteristics of a Horizontal Axis Wind Turbine
,”
Energy
,
30
(
11–12
), pp.
2089
2100
. 10.1016/j.energy.2004.08.015
17.
He
,
Y.
,
Chan
,
P.
, and
Li
,
Q.
,
2013
, “
Wind Characteristics Over Different Terrains
,”
J. Wind Eng. Ind. Aerodyn
,
20
, pp.
51
69
. 10.1016/j.jweia.2013.06.016
18.
Ashrafi
,
Z. N.
,
Ghaderi
,
M.
, and
Sedaghat
,
A.
,
2015
, “
Parametric Study on Off-Design Aerodynamic Performance of a Horizontal Axis Wind Turbine Blade and Proposed Pitch Control
,”
Energy Convers. Manage.
,
93
, pp.
349
356
. 10.1016/j.enconman.2015.01.048
19.
Lee
,
M. H.
,
Shiah
,
Y. C.
, and
Bai
,
C. J.
,
2016
, “
Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn
,
149
, pp.
17
29
. 10.1016/j.jweia.2015.12.002
20.
Melo
,
D. B.
,
Baltazar
,
J.
, and
de Campos
,
J. A. C. F.
,
2018
, “
A Numerical Wake Alignment Method for Horizontal Axis Wind Turbines With the Lifting Line Theory
,”
J. Wind Eng. Ind. Aerodyn
,
174
, pp.
382
390
. 10.1016/j.jweia.2018.01.028
21.
Kaya
,
M. N.
,
Kose
,
F.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Aerodynamic Performance of a Horizontal Axis Wind Turbine With Forward and Backward Swept Blades
,”
J. Wind Eng. Ind. Aerodyn
,
176
, pp.
166
173
. 10.1016/j.jweia.2018.03.023
22.
Pourrajabian
,
A.
,
Ebrahimi
,
R.
, and
Mirzaei
,
M.
,
2014
, “
Applying Micro Scales of Horizontal Axis Wind Turbines for Operation in Low Wind Speed Regions
,”
Energy Convers. Manage.
,
87
, pp.
119
127
. 10.1016/j.enconman.2014.07.003
23.
Li
,
Q.
,
Murata
,
J.
,
Endo
,
M.
,
Maeda
,
T.
, and
Kamada
,
Y.
,
2016
, “
Experimental and Numerical Investigation of the Effect of Turbulent Inflow on a Horizontal Axis Wind Turbine (Part I: Power Performance)
,”
Energy
,
113
, pp.
713
722
. 10.1016/j.energy.2016.06.138
24.
Xie
,
W.
,
Zeng
,
P.
, and
Lei
,
L.
,
2017
, “
Wind Tunnel Testing and Improved Blade Element Momentum Method for Umbrella-Type Rotor of Horizontal Axis Wind Turbine
,”
Energy
,
119
, pp.
334
350
. 10.1016/j.energy.2016.12.051
25.
Singh
,
R. K.
,
Ahmed
,
M. R.
,
Zullah
,
M. A.
, and
Lee
,
Y. H.
,
2012
, “
Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines
,”
Renewable Energy
,
42
, pp.
66
76
. 10.1016/j.renene.2011.09.014
26.
Karthikeyan
,
N.
,
Murugavel
,
K. K.
,
Kumar
,
S. A.
, and
Rajakumar
,
S.
,
2015
, “
Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
801
822
. 10.1016/j.rser.2014.10.086
27.
Ilhan
,
A.
,
Bilgili
,
M.
, and
Sahin
,
B.
,
2018
, “
Analysis of Aerodynamic Characteristics of 2 MW Horizontal Axis Large Wind Turbine
,”
Wind Struc.
,
27
(
3
), pp.
187
197
.
28.
Bilgili
,
M.
, and
Yasar
,
A.
,
2017
, “
Performance Evaluation of a Horizontal Axis Wind Turbine in Operation
,”
Int. J. Green Energy
,
14
(
12
), pp.
1048
1056
. 10.1080/15435075.2017.1357039
29.
Sedaghat
,
A.
, and
Mirhosseini
,
M.
,
2012
, “
Aerodynamic Design of a 300 kW Horizontal Axis Wind Turbine for Province of Semnan
,”
Energy Convers. Manage.
,
63
, pp.
87
94
. 10.1016/j.enconman.2012.01.033
30.
Dai
,
J. C.
,
Hu
,
Y. P.
,
Liu
,
D. S.
, and
Long
,
X.
,
2011
, “
Aerodynamic Loads Calculation and Analysis for Large Scale Wind Turbine Based on Combining BEM Modified Theory With Dynamic Stall Model
,”
Renewable Energy
,
36
(
3
), pp.
1095
1104
. 10.1016/j.renene.2010.08.024
31.
Lin
,
Y. T.
,
Chiu
,
P. H.
, and
Huang
,
C. C.
,
2017
, “
An Experimental and Numerical Investigation on the Power Performance of 150 kW Horizontal Axis Wind Turbine
,”
Renewable Energy
,
113
, pp.
85
93
. 10.1016/j.renene.2017.05.065
32.
Bilgili
,
M.
, and
Sahin
,
B.
,
2009
, “
Investigation of Wind Energy Density in the Southern and Southwestern Region of Turkey
,”
J. Energy Eng.
,
135
(
1
), pp.
12
20
. 10.1061/(ASCE)0733-9402(2009)135:1(12)
33.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
, 2nd ed.,
John Wiley and Sons, Ltd.
,
Chichester, UK
.
34.
Yuji
,
O.
, and
Koichi
,
W.
, “
A New Approach Toward Power Output Enhancement Using Multirotor Systems With Shrouded Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051203
. 10.1115/1.4042235
35.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
. 10.1115/1.4030617
36.
GDEA. Wind Energy Potential Atlas
,”
General Directorate of Energy Affairs
, https://www.eigm.gov.tr/tr-TR/Sayfalar/REPA, Accessed June 3, 2020.
37.
VESTAS
. “
Technical specifications
,” https://www.vestas.com/en/products/, Accessed June 3, 2020.
38.
Holman
,
J. P.
,
1989
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.