Abstract

Bubble point pressure (BPP) not only is a basic pressure–volume–temperature (PVT) parameter for calculation nearly all of the crude oil characteristics, but also determines phase-type of oil reservoirs, gas-to-oil ratio, oil formation volume factor, inflow performance relationship, and so on. Since the measurement of BPP of crude oil is an expensive and time-consuming experiment, this study develops a committee machine-ensemble (CME) paradigm for accurate estimation of this parameter from solution gas-oil ratio, reservoir temperature, gas specific gravity, and stock-tank oil gravity. Our CME approach is designed using a linear combination of predictions of four different expert systems. Unknown coefficients of this combination are adjusted through minimizing deviation between actual BPPs and their associated predictions using differential evolution and genetic algorithm. Our proposed CME paradigm is developed using 380 PVT datasets for crude oils from different geological regions. This novel intelligent paradigm estimates available experimental databank with excellent accuracy i.e., absolute average relative deviation (AARD) of 6.06% and regression coefficient (R2) of 0.98777. Accurate prediction of BPP using our CME paradigm decreases the risk of producing from a two-phase region of oil reservoirs.

References

1.
Wang
,
S.
,
Cheng
,
L.
,
Huang
,
S.
,
Xue
,
Y.
,
Bai
,
M.
,
Wu
,
Y.
,
Jia
,
P.
,
Sun
,
Z.
, and
Wang
,
J.
,
2019
, “
A Semi-Analytical Method for Modeling two-Phase Flow Behavior in Fractured Carbonate Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072902
. 10.1115/1.4042237
2.
Nategh
,
M.
,
Vaferi
,
B.
, and
Riazi
,
M.
,
2019
, “
Orthogonal Collocation Method for Solving the Diffusivity Equation: Application on Dual Porosity Reservoirs With Constant Pressure Outer Boundary
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042001
. 10.1115/1.4041842
3.
Sun
,
X.
,
Li
,
B.
,
Ma
,
X.
,
Pan
,
Y.
,
Yang
,
S.
, and
Huang
,
W.
,
2020
, “
Proper Orthogonal Decomposition-Based Method for Predicting Flow and Heat Transfer of Oil and Water in Reservoir
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012401
. 10.1115/1.4044192
4.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E.
,
Al-Shehri
,
D.
, and
Patil
,
S.
,
2019
, “
Heavy Oil Recovery Using in Situ Steam Generated by Thermochemicals: a Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122903
. 10.1115/1.4043862
5.
Moghimihanjani
,
M.
, and
Vaferi
,
B.
,
2020
, “
A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013001
. 10.1115/1.4047595
6.
Standing
,
M. B.
,
1947
, “A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases,”
Drilling and Production Practice
,
American Petroleum Institute
.
7.
Vazquez
,
M.
, and
Beggs
,
H. D.
,
1977
, “
Correlations for Fluid Physical Property Prediction
,”
SPE Annual Fall Technical Conference and Exhibition.
Society of Petroleum Engineers
.
8.
Al-Marhoun
,
M. A.
,
1988
, “
PVT Correlations for Middle East Crude Oils
,”
J. Petrol. Technol.
,
40
(
05
), pp.
650
666
. 10.2118/13718-PA
9.
Petrosky
,
G. E.
, Jr.
, and
Farshad
,
F. F.
,
1993
, “
Pressure–Volume–Temperature Correlations for Gulf of Mexico Crude Oils
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
.
10.
Omar
,
M. I.
, and
Todd
,
A. C.
,
1993
, “
Development of New Modified Black Oil Correlations for Malaysian Crudes
,”
SPE Asia Pacific Oil and Gas Conference
,
Singapore
,
Feb. 8–10
.
11.
Frashad
,
F.
,
LeBlanc
,
J. L.
,
Garber
,
J. D.
, and
Osorio
,
J. G.
,
1996
, “
Empirical PVT Correlations for Colombian Crude Oils
,”
SPE Latin America/Caribbean Petroleum Engineering Conference
,
Port-of-Spain, Trinidad
,
Apr. 23–26
.
12.
Al-Shammasi
,
A. A.
,
2001
, “
A Review of Bubble Point Pressure and Oil Formation Volume Factor Correlations
,”
SPE Reserv. Eval. Eng.
,
4
(
02
), pp.
146
160
. 10.2118/71302-PA
13.
Hanafy
,
H. H.
,
Macary
,
S. M.
,
Elnady
,
Y. M.
,
Bayomi
,
A. A.
, and
El Batanony
,
M. H.
,
2005
, “
Application of Empirical PVT Correlations Exemplify Significance of Developing Regional Correlations–a new Approach
,”
SPE Offshore Mediterranean Conference and Exhibition
,
Ravenna, Italy
,
Mar. 16–18
.
14.
Hemmati
,
M. N.
, and
Kharrat
,
R.
,
2007
, “
A Correlation Approach for Prediction of Crude Oil PVT Properties
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 11–14
.
15.
Ikiensikimama
,
S. S.
, and
Ajienka
,
J. A.
,
2012
, “
Impact of PVT Correlations Development on Hydrocarbon Accounting: the Case of the Niger Delta
,”
J. Pet. Sci. Eng.
,
81
, pp.
80
85
. 10.1016/j.petrol.2011.12.017
16.
Moradi
,
B.
,
Malekzadeh
,
E.
,
Amani
,
M.
,
Boukadi
,
F. H.
, and
Kharrat
,
R.
,
2010
, “
Bubble Point Pressure Empirical Correlation
,”
SPE Energy Resources Conference
,
Port of Spain, Trinidad
,
June 27–30
.
17.
Gomaa
,
S.
,
2016
, “
New Bubble Point Pressure Correlation for Middle East Crude Oils
,”
Int. Adv. Res. J. Sci. Eng. Tech
,
3
(
12
), pp.
1
9
.
18.
Ghorbani
,
H.
,
Wood
,
D. A.
,
Choubineh
,
A.
,
Mohamadian
,
N.
,
Tatar
,
A.
,
Farhangian
,
H.
, and
Nikooey
,
A.
,
2020
, “
Performance Comparison of Bubble Point Pressure From Oil PVT Data: Several Neurocomputing Techniques Compared
,”
Exp. Comput. Multiphase Flow.
,
2
(
4
), pp.
225
246
. 10.1007/s42757-019-0047-5
19.
Heidarian
,
M.
,
Karimnezhad
,
M.
,
Schaffie
,
M.
, and
Ranjbar
,
M.
,
2017
, “
A new Empirical Correlation for Estimating Bubble Point Pressure Using the Genetic Algorithm
,”
Geol. Geophys. Environment.
,
43
(
1
), pp.
33
41
. 10.7494/geol.2017.43.1.33
20.
Moghadam
,
J. N.
,
Salahshoor
,
K.
, and
Kharrat
,
R.
,
2001
, “
Introducing a new Method for Predicting PVT Processing of Iranian Crude Oils by Applying Artificial Neural Network,” Petrol
,”
Sci. Technol.
,
29
(
10
), pp.
1066
1079
.
21.
Gharbi
,
R. B.
, and
Elsharkawy
,
A. M.
,
1997
, “
Neural Network Model for Estimating the PVT Properties of Middle East Crude Oils
,”
SPE Middle East Oil Show and Conference
,
Bahrain
,
Mar. 15–18
.
22.
Osman
,
E. A.
,
Abdel-Wahhab
,
O. A.
, and
Al-Marhoun
,
M. A.
,
2001
, “
Prediction of Oil PVT Properties Using Neural Networks
,”
SPE Middle East Oil Show
,
Manama, Bahrain
,
Mar. 17–20
.
23.
Al-Marhoun
,
M. A.
, and
Osman
,
E. A.
,
2002
, “
Using Artificial Neural Networks to Develop new PVT Correlations for Saudi Crude Oils
,”
The 10th Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, United Arab Emirates
,
Oct. 13–16
.
24.
Numbere
,
O. G.
,
Azuibuike
,
I. I.
, and
Ikiensikimama
,
S. S.
,
2013
, “
Bubble Point Pressure Prediction Model for Niger Delta Crude Using Artificial Neural Network Approach
,”
SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
Aug. 5–7
.
25.
Adeeyo
,
Y. A.
,
2016
, “
Artificial Neural Network Modelling of Bubble Point Pressure and Formation Volume Factor at Bubble Point Pressure of Nigerian Crude Oil
,”
SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
Aug. 5–7
.
26.
Fath
,
A. H.
,
Madanifar
,
F.
, and
Abbasi
,
M.
,
2020
, “
Implementation of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Neural Networks to Predict Solution Gas-Oil Ratio of Crude Oil Systems
,”
Petroleum
,
6
(
1
), pp.
80
91
. 10.1016/j.petlm.2018.12.002
27.
El-Sebakhy
,
E. A.
,
Sheltami
,
T.
,
Al-Bokhitan
,
S. Y.
,
Shaaban
,
Y.
,
Raharja
,
P. D.
, and
Khaeruzzaman
,
Y.
,
2007
, “
Support Vector Machines Framework for Predicting the PVT Properties of Crude Oil Systems
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 11–14
.
28.
Baarimah
,
S. O.
,
Gawish
,
A. A.
, and
BinMerdhah
,
A. B.
,
2015
, “
Artificial Intelligence Techniques for Predicting the Reservoir Fluid Properties of Crude Oil Systems
,”
Int. Res. J. Eng. Technol.
,
2
(
7
), pp.
373
382
.
29.
Nabipour
,
N.
, and
Baghban
,
A.
,
2019
, “
Rigorous Model for Determination of PVT Properties of Crude Oil in Operational Conditions
,”
Energy Sources, Part A
,
41
(
1
), pp.
1
7
. 10.1080/15567036.2019.1677823
30.
Tohidi-Hosseini
,
S. M.
,
Hajirezaie
,
S.
,
Hashemi-Doulatabadi
,
M.
,
Hemmati-Sarapardeh
,
A.
, and
Mohammadi
,
A. H.
,
2016
, “
Toward Prediction of Petroleum Reservoir Fluids Properties: A Rigorous Model for Estimation of Solution Gas-Oil Ratio
,”
J. Nat. Gas. Sci. Eng.
,
29
, pp.
506
516
. 10.1016/j.jngse.2016.01.010
31.
Nazari
,
A.
,
Kavian
,
S.
, and
Nazari
,
A.
,
2020
, “
Lithium-Ion Batteries Energy Efficiency Prediction Using Physics Based and State-of-art Artificial Neuron Network (ANN) Based Models
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102001
. 10.1115/1.4047313
32.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
. 10.1115/1.4042408
33.
Abbas
,
A. K.
,
Rushdi
,
S.
,
Alsaba
,
M.
, and
Al Dushaishi
,
M. F.
,
2019
, “
Drilling Rate of Penetration Prediction of High-Angled Wells Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112904
. 10.1115/1.4043699
34.
Davoudi
,
E.
, and
Vaferi
,
B.
,
2018
, “
Applying Artificial Neural Networks for Systematic Estimation of Degree of Fouling in Heat Exchangers
,”
Chem. Eng. Res. Des.
,
130
, pp.
138
153
. 10.1016/j.cherd.2017.12.017
35.
Badde
,
D. S.
,
Gupta
,
A. K.
, and
Patki
,
V. K.
,
2013
, “
Cascade and Feedforward Back Propagation Artificial Neural Network Models for Prediction of Compressive Strength of Ready mix Concrete
,”
IOSR J. Mech. Civil Eng.
,
3
(
1
), pp.
1
6
.
36.
Warsito
,
B.
,
Santoso
,
R.
, and
Yasin
,
H.
,
2018
, “
Cascade Forward Neural Network for Time Series Prediction
,”
J. Phys.: Conf. Ser.
,
1025
(
1
), p.
012097
. 10.1088/1742-6596/1025/1/012097
37.
Chen
,
G.
,
Zhou
,
J.
,
Zhang
,
X.
, and
Zhang
,
Z. J.
,
2009
, “
A Daily Load Forecasting Method Based on Cascaded Back Propagation and Radial Basis Function Neural Networks
,”
Power Syst. Technol.
,
33
(
12
), pp.
101
105
.
38.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural. Process. Lett.
,
9
(
3
), pp.
293
300
. 10.1023/A:1018628609742
39.
Feng
,
Q.
,
Cui
,
R.
,
Wang
,
S.
,
Zhang
,
J.
, and
Jiang
,
Z.
,
2019
, “
Estimation of CO2 Diffusivity in Brine by use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041001
. 10.1115/1.4041724
40.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Deniz Karaoglan
,
A.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled with Hazelnut Oil Methyl Ester: the Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
. 10.1115/1.4032941
41.
Jang
,
J. S.
,
1993
, “
ANFIS: Adaptive Network-Based Fuzzy Inference Systems
,”
IEEE T. Syst. Man. CY. B.
,
23
(
3
), pp.
665
685
. 10.1109/21.256541
42.
Hanbay
,
D.
,
Baylar
,
A.
, and
Ozpolat
,
E.
,
2009
, “
Predicting Flow Conditions Over Stepped Chutes Based on ANFIS
,”
Soft Comput.
,
13
(
7
), pp.
701
707
. 10.1007/s00500-008-0343-7
43.
Elkatatny
,
S.
,
2018
, “
Application of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline log Data
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072905
. 10.1115/1.4039613
44.
Figueiras-Vidal
,
A. R.
, and
Rokach
,
L.
,
2012
, “
An Exploration of Research Directions in Machine Ensemble Theory and Applications
,”
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
,
Bruges, Belgium
,
Apr. 25–27
.
45.
Chen
,
C. H.
, and
Lin
,
Z. S.
,
2006
, “
A Committee Machine with Empirical Formulas for Permeability Prediction
,”
Comput. Geosci.
,
32
(
4
), pp.
485
496
. 10.1016/j.cageo.2005.08.003
46.
Ghiasi-Freez
,
J.
,
Kadkhodaie-Ilkhchi
,
A.
, and
Ziaii
,
M.
,
2012
, “
Improving the Accuracy of Flow Units Prediction Through two Committee Machine Models: an Example From the South Pars Gas Field, Persian Gulf Basin, Iran
,”
Comput. Geosci.
,
46
, pp.
10
23
. 10.1016/j.cageo.2012.04.006
47.
Mahmoodi
,
F.
,
Darvishi
,
P.
, and
Vaferi
,
B.
,
2018
, “
Prediction of Coefficients of the Langmuir Adsorption Isotherm Using Various Artificial Intelligence (AI) Techniques
,”
J. Iran. Chem. Soc.
,
15
(
12
), pp.
2747
2757
. 10.1007/s13738-018-1462-4
48.
Vaferi
,
B.
, and
Jahanmiri
,
A.
,
2011
, “
Developing Adaptive Differential Evolution as a new Evolutionary Algorithm, Application in Optimization of Chemical Processes
,”
Iran. J. Chem. Eng.
,
8
(
2
), pp.
18
28
.
49.
Bello
,
O. O.
,
Reinicke
,
K. M.
, and
Patil
,
P. A.
,
2008
, “
Comparison of the Performance of Empirical Models Used for the Prediction of the PVT Properties of Crude Oils of the Niger Delta
,”
Petrol. Sci. Technol.
,
26
(
5
), pp.
593
609
. 10.1080/10916460701204685
50.
Dokla
,
M.
, and
Osman
,
M.
,
1992
, “
Correlation of PVT Properties for UAE Crudes
,”
SPE Form. Eval.
,
7
(
01
), pp.
41
46
. 10.2118/20989-PA
51.
Glaso
,
O.
,
1980
, “
Generalized Pressure-Volume-Temperature Correlations
,”
J. Petrol. Technol.
,
32
(
05
), pp.
785
795
. 10.2118/8016-PA
52.
Mahmood
,
M. A.
, and
Al-Marhoun
,
M. A.
,
1996
, “
Evaluation of Empirically Derived PVT Properties for Pakistani Crude Oils
,”
J. Pet. Sci. Eng.
,
16
(
4
), pp.
275
290
. 10.1016/S0920-4105(96)00042-3
53.
Ariana
,
M. A.
,
Vaferi
,
B.
, and
Karimi
,
G.
,
2015
, “
Prediction of Thermal Conductivity of Alumina Water-Based Nanofluids by Artificial Neural Networks
,”
Powder Technol.
,
278
, pp.
1
10
. 10.1016/j.powtec.2015.03.005
54.
Gholami
,
E.
,
Vaferi
,
B.
, and
Ariana
,
M. A.
,
2018
, “
Prediction of Viscosity of Several Alumina-Based Nanofluids Using Various Artificial Intelligence Paradigms—Comparison with Experimental Data and Empirical Correlations
,”
Powder Technol.
,
323
, pp.
495
506
. 10.1016/j.powtec.2017.10.038
You do not currently have access to this content.