Abstract

In the wet gas desulphurization tower, the uneven distribution of flue gas will have a negative impact on the desulphurization process. The effect should be counterbalanced by increasing the amount of slurry spray, which will increase the operating costs. Adding deflectors will also bring negative effects and increase the expenses. In order to avoid the negative influence, this paper studied the flow field distribution regularities of flue gas in desulfurization tower at different inlet velocities and liquid–gas ratios. Velocity field distribution character was evaluated by uniformity index. The results showed that the flue gas forms a vortex in the tower and a local high-speed gas-flow appears in the empty tower, which led to a poor flow field uniformity. After adding the spray, the flow field is integrated into uniformity. The slurry has obvious integration effect on flue gas. The lower the inlet flue gas velocity is, the higher the velocity uniform index in the desulfurization tower will be, and the heat exchange between the two phases more sufficient. To achieve the same uniformity, the less amount of slurry is required while the inlet velocity is slower. The energy consumption and material consumption of the desulfurization system can be effectively reduced by reducing the import speed reasonably.

References

1.
Graus
,
W. H. J.
, and
Worrell
,
E.
,
2007
, “
Effects of SO2 and NOx Control on Energy-Efficiency Power Generation
,”
Energy Policy
,
35
(
7
), pp.
3898
3908
. 10.1016/j.enpol.2007.01.011
2.
He
,
Z.
,
Yan
,
Y.
,
Xu
,
F.
,
Yang
,
Z.
,
Cui
,
H.
,
Wu
,
Z.
, and
Li
,
L.
,
2020
, “
Combustion Characteristics and Thermal Enhancement of Premixed Hydrogen/Air in Micro Combustor With Pin Fin Arrays
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
5014
5027
. 10.1016/j.ijhydene.2019.12.093
3.
Niu
,
J.
,
Liland
,
S. E.
,
Yang
,
J.
,
Rout
,
K. R.
,
Ran
,
J.
, and
Chen
,
D.
,
2019
, “
Effect of Oxide Additives on the Hydrotalcite Derived Ni Catalysts for CO2 Reforming of Methane
,”
Chem. Eng. J.
,
377
, p.
119763
. 10.1016/j.cej.2018.08.149
4.
Yousefia
,
H.
,
Mehrpooyaa
,
M.
, and
Naeiji
,
E.
,
2017
, “
Modeling and Optimization of Currently in Operation Natural gas Desulfurization Process Using Adsorption Separation Method
,”
Chem. Eng. Proc.
,
120
(
2017
), pp.
220
233
. 10.1016/j.cep.2017.06.015
5.
Akyalc ın
,
L.
, and
Kaytakoglu
,
S.
,
2010
, “
Flue Gas Desulfurization by Citrate Process and Optimization of Working Parameters
,”
Chem. Eng. Proc.
,
2
(
49
), pp.
199
204
. 10.1016/j.cep.2009.12.008
6.
Jia
,
Y.
,
Yin
,
L.
,
Xu
,
Y.
,
Chen
,
Y.
, and
Ding
,
X.
,
2017
, “
Simulation of the Absorption of SO2 by Ammonia in a Spray Scrubber
,”
Chem. Eng. Proc.
,
2017
(
116
), pp.
60
67
. 10.1016/j.cep.2017.03.001
7.
Guo
,
W. L.
, and
He
,
C.
,
2010
, “
Numerical Simulation Analysis of Fluid in the Semi-State Within the Desulphurization Tower
,”
Adv. Mater. Res.
,
118−120
, pp.
921
924
. www.scientific.net/AMR.118-120.921
8.
Weiss
,
C.
, and
Wieltsch
,
U.
,
2004
, “
Optical Flow Measurements and Computational Fluid Dynamic Calculation of Spray Tower Hydrodynamics
,”
Chem. Eng. Res. Des.
,
83
, pp.
1
17
.
9.
Niu
,
J.
,
Wang
,
Y.
,
Qi
,
Y.
,
Dam
,
A. H.
,
Wang
,
H.
,
Zhu
,
Y.-A.
,
Holmen
,
A.
,
Ran
,
J.
, and
Chen
,
D.
,
2020
, “
New Mechanism Insights Into Methane Steam Reforming on Pt/Ni From DFT and Experimental Kinetic Study
,”
Fuel
,
266
, p.
117143
. 10.1016/j.fuel.2020.117143
10.
Fang
,
S. L.
,
Du
,
Y. Q.
,
Huang
,
S. Y.
,
Wen
,
W. Q.
, and
Liu
,
Y.
,
2012
, “
Numerical Simulation Research for the Optimization of the Wet Flue Gas Desulfurization Tower
,”
Appl. Mech. Mater.
,
170–173
, pp.
3662
3667
. www.scientific.net/AMM.170-173.3662
11.
Zhen
,
C.
,
Wang
,
H. M.
,
Zhuo
,
J. K.
, and
You
,
C. F.
,
2018
, “
Enhancement of Mass Transfer between Flue Gas and Slurry in the Wet Flue Gas Desulfurization Spray Tower
,”
Energy & Fuels
,
32
, pp.
703
712
. 10.1021/acs.energyfuels.7b03009
12.
Bai
,
M.H.
, and
Han
,
W.Y.
,
2010
, “
Numerical Simulation of Flow Field in Wet Desulfurization Spray Tower
,”
International Conference on Information Engineering & Computer Science
,
Wuhan
,
Dec. 25–26
, pp.
1
4
.
13.
Tseng
,
C. C
, and
Li
,
C. J.
,
2018
, “
Eulerian-Eulerian Numerical Simulation for a Flue Gas Desulfurization Tower with Perforated Sieve Trays
,”
Int. J. Heat Mass Trans.
,
116
, pp.
329
345
. 10.1016/j.ijheatmasstransfer.2017.09.024
14.
Ranz
,
W. E.
,
1952
, “
Evaporation From Drops: Part 2
,”
Chem. Eng. Prog.
,
48
, pp.
173
180
.
15.
Kallinikos
,
L. E.
,
Spartinos
,
E. I.
,
Spartinos
,
D.N.
, and
Papayannakos
,
N.G.
,
2010
, “
Simulation of the Operation of an Industrial Wet Flue Gas Desulfurization System
,”
Fuel Process Technol
,
91
(
12
), pp.
1794
1802
. 10.1016/j.fuproc.2010.07.020
16.
Zhang
,
Y.
,
Li
,
N.
,
Kong
,
D.
,
Zhou
,
Q.
,
Luo
,
R.
, and
Xu
,
T.
,
2013
, “
Numerical Simulation on Gas-Liquid Flow, Heat, and Mass Transfer Characteristics in a Dual-Contact-Flow Absorption Tower
,”
Asia–Pac. J. Chem. Eng.
,
8
(
6
), pp.
849
861
.
17.
Zhao
,
J. Z.
,
Jin
,
B. S.
, and
Zhong
,
Z. P.
,
2007
, “
The Degree of Desulphurization of a Limestone/Gypsum Wet FGD Spray Tower Using Response Surface Methodology
,”
Chem. Eng. Technol.
,
30
(
4
), pp.
517
522
. 10.1002/ceat.200600347
18.
Warych
,
J.
, and
Szymanowski
,
M.
,
2001
, “
Model of the Wet Limestone Flue Gas Desulfurization Process for Cost Optimization
,”
Ind. Eng. Chem. Res.
,
40
(
12
), pp.
1794
1802
. 10.1021/ie0005708
19.
Wang
,
S. J.
,
Zhu
,
P.
,
Zhang
,
G.
,
Zhang
,
Q.
,
Wang
,
Z.Y.
, and
Zhao
,
L.
,
2015
, “
Numerical Simulation Research of Flow Field in Ammonia-Based Wet Flue Gas Desulfurization Tower
,”
J. Energy Inst.
,
88
(
3
), pp.
284
291
. 10.1016/j.joei.2014.09.002
20.
Zhou
,
G.
,
Zhong
,
W.
,
Zhou
,
Y.
,
Wang
,
J.
, and
Wang
,
T.
,
2017
, “
3D Simulation of Sintering Flue Gas Desulfurization and Denitration in a Bubbling Gas Absorbing Tower
,”
Powder Technol.
,
314
, pp.
412
426
. 10.1016/j.powtec.2016.09.051
21.
Marocco
,
L.
,
2010
, “
Modeling of the Fluid Dynamics and SO2 Absorption in a Gas–Liquid Reactor
,”
Chem. Eng. J.
,
162
(
1
), pp.
217
226
. 10.1016/j.cej.2010.05.033
22.
YI
,
Z. H. O. N. G.
,
Gao
,
X.
,
Huo
,
W.
,
Luo
,
Z.-Y.
,
Ni
,
M.-J.
, and
Cen
,
K.-F.
,
2008
, “
A Model for Performance Optimization of Wet Flue Gas Desulfurization Systems of Power Plants
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1025
1032
. 10.1016/j.fuproc.2008.04.004
23.
Montanes
,
C.
,
Gonnez
,
S. A.
, and
Fueyo
,
N.
,
2009
, “
Computational Evaluation of Wall Rings in Wet Flue-Gas Desulfurization Plants
,”
Int. J. Energy Clean Environ.
,
10
(
1–4
), pp.
15
36
. 10.1615/InterJEnerCleanEnv.v10.i1-4.20
24.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
. 10.1017/S0022112072001806
25.
Marocco
,
M.
,
Luca
, and
Inzoli
,
F.
,
2009
, “
Multiphase Euler–Lagrange CFD Simulation Applied to Wet Flue Gas Desulphurisation Technology
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
185
194
. 10.1016/j.ijmultiphaseflow.2008.09.005
26.
Dudek
,
S.
,
Rogers
,
J.
, and
Gohara
,
W.
,
1999
, “
Computational Fluid Dynamics (CFD) Model for Predicting two-Phase Flow in a Flue-Gas-Desulfurization Wet Scrubber
,”
EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium
,
Atlanta, GA
,
Aug. 16–20
, pp.
16
18
.
27.
Qi
,
W.
,
Niu
,
J.
,
Huang
,
Z.
,
Chen
,
Z.
,
Chen
,
X.
,
Chen
,
F.
, and
Tuo
,
J.
,
2020
, “
Mechanisms Insight Into Oxygen Reduction Reaction on Sulfur-Doped Fe-N2 Graphene Electrocatalysts
,”
Int. J. Hydrogen Energy
,
45
(
1
), pp.
521
530
. 10.1016/j.ijhydene.2019.10.205
28.
Chen
,
Z.
,
You
,
F. C.
, and
Liu
,
H. H.
,
2018
, “
The Synergetic Particles Collection in Three Different Wet Flue Gas Desulfurization Towers: A Pilot-Scale Experimental Investigation
,”
Fuel Process. Technol.
,
179
, pp.
344
350
. 10.1016/j.fuproc.2018.07.025
You do not currently have access to this content.