Abstract

The aim of this research is to investigate the influences of apex seal leakage on the formation mechanism of flow field in a side-ported rotary engine by particle image velocimetry (PIV) and computational fluid dynamics (CFD). In this study, a PIV was used to acquire the two-dimensional (2D) flow field on the rotor housing central plane at an engine speed of 700 rpm. A three-dimensional (3D) dynamic simulation model considering leakage through apex seals was established and verified by the 2D-PIV experiment results. Thereafter, CFD analysis was used to further understand the 3D flow field in combustion chamber under the action of apex seal leakage. The simulation results showed that for the three engine speeds (2000, 3500, and 5000 rpm), in the intake stroke, the vortex generated in the front end of combustion chamber under the condition with no leakage, was strengthened and destroyed by the effects of the small (0.02 mm) and the large (0.08 mm) apex seal leakage gaps, respectively. As the apex seal leakage gap increased, the volume efficiency and the peak pressure decreased continuously. The volume efficiency and the peak pressure caused by any fixed apex seal leakage gap decreased with the increase of the engine speed. Compared with the volumetric efficiency of the condition with no leakage at 2000 and 5000 rpm, the volumetric efficiency of apex seal leakage gap of 0.08 mm decreased only by 24.6% at 5000 rpm, but by 41.2% at 2000 rpm.

References

References
1.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Shi
,
C.
,
Ma
,
Z.
, and
Zhang
,
B.
,
2018
, “
Numerical Study of Hydrogen Direct Injection Strategy on Mixture Formation and Combustion Process in a Partially Premixed Gasoline Wankel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
184
193
. 10.1016/j.enconman.2018.09.008
2.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Ma
,
Z.
, and
Zhang
,
B.
,
2018
, “
Numerical Investigation on the Mixture Formation and Combustion Processes of a Gasoline Rotary Engine With Direct Injected Hydrogen Enrichment
,”
Appl. Energy
,
224
, pp.
34
41
. 10.1016/j.apenergy.2018.04.092
3.
Ozcanli
,
M.
,
Bas
,
O.
,
Akar
,
M. A.
,
Yildizhan
,
S.
, and
Serin
,
H.
,
2018
, “
Recent Studies on Hydrogen Usage in Wankel SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
38
), pp.
18037
18045
. 10.1016/j.ijhydene.2018.01.202
4.
Chen
,
W.
,
Pan
,
J.
,
Liu
,
Y.
,
Fan
,
B.
,
Liu
,
H.
, and
Otchere
,
P.
,
2019
, “
Numerical Investigation of Direct Injection Stratified Charge Combustion in a Natural Gas-Diesel Rotary Engine
,”
Appl. Energy
,
233–234
, pp.
453
467
. 10.1016/j.apenergy.2018.10.038
5.
Wang
,
W.
,
Zuo
,
Z.
, and
Liu
,
J.
,
2016
, “
Miniaturization Limitations of Rotary Internal Combustion Engines
,”
Energy Convers. Manage.
,
112
, pp.
101
114
. 10.1016/j.enconman.2016.01.002
6.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Chen
,
W.
, and
Bani
,
S.
,
2017
, “
The Influence of Injection Strategy on Mixture Formation and Combustion Process in a Direct Injection Natural gas Rotary Engine
,”
Appl. Energ.
,
187
, pp.
663
674
. 10.1016/j.apenergy.2016.11.106
7.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
, and
Shi
,
L.
,
2018
, “
Improving the Combustion Performance of a Gasoline Rotary Engine by Hydrogen Enrichment at Various Conditions
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1902
1908
. 10.1016/j.ijhydene.2017.11.175
8.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Ma
,
Z.
, and
Ma
,
L.
,
2018
, “
A Comparative Study of Mixture Formation and Combustion Processes in a Gasoline Wankel Rotary Engine With Hydrogen Port and Direct Injection Enrichment
,”
Energy Convers. Manage.
,
168
, pp.
21
31
. 10.1016/j.enconman.2018.04.105
9.
Chouinard
,
E.
,
Hamady
,
F.
, and
Schock
,
H.
,
1990
, “
Airflow Visualization and LDV Measurements in a Motored Rotary Engine Assembly Part 2: LDV Measurements
,” SAE Technical paper 900030.
10.
Antonelli
,
M.
,
Baccioli
,
A.
,
Francesconi
,
M.
,
Desideri
,
U.
, and
Martorano
,
L.
,
2014
, “
Operating Maps of a Rotary Engine Used as an Expander for Micro-Generation With Various Working Fluids
,”
Appl. Energ.
,
113
, pp.
742
750
. 10.1016/j.apenergy.2013.08.003
11.
Amrouche
,
F.
,
Erickson
,
P.
,
Park
,
J.
, and
Varnhagen
,
S.
,
2014
, “
An Experimental Investigation of Hydrogen Enriched Gasoline in a Wankel Rotary Engine
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8525
8534
. 10.1016/j.ijhydene.2014.03.172
12.
Zambalov
,
S. D.
,
Yakovlev
,
I. A.
, and
Skripnyak
,
V. A.
,
2017
, “
Numerical Simulation of Hydrogen Combustion Process in Rotary Engine With Laser Ignition System
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17251
17259
. 10.1016/j.ijhydene.2017.05.142
13.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
,
Shi
,
L.
, and
Yang
,
J.
,
2018
, “
Improving the Lean Performance of an n-Butanol Rotary Engine by Hydrogen Enrichment
,”
Energy Convers. Manage.
,
157
, pp.
96
102
. 10.1016/j.enconman.2017.12.005
14.
Rose
,
S. W.
, and
Yang
,
D. C.
,
2014
, “
Wide and Multiple Apex Seals for the Rotary Engine: (Abbr.: Multi-Apex-Seals for the Rotary Engine)
,”
Mech. Mach. Theory
,
74
(
6
), pp.
202
215
. 10.1016/j.mechmachtheory.2013.12.011
15.
Picard
,
M.
,
Tian
,
T.
, and
Nishino
,
T.
,
2015
, “
Modeling of the Rotary Engine Apex Seal Lubrication
,” SAE Paper No. 2015-01-2035.
16.
Zhang
,
S.
,
Liu
,
J.
,
Zuo
,
Z.
, and
Zhang
,
Y.
,
2017
, “
An Analytical Investigation of Oil Film Thickness for the Apex Seal in a Small Wankel Rotary Engine
,”
Tribol. Int.
,
116
, pp.
383
393
. 10.1016/j.triboint.2017.07.031
17.
Zhang
,
Y.
, and
Wang
,
W.
,
2011
, “
Effects of Leakage and Friction on the Miniaturization of a Wankel Compressor
,”
Front. Energy
,
5
(
1
), pp.
83
92
. 10.1007/s11708-010-0125-7
18.
Taskiran
,
O. O.
,
Calik
,
A. T.
, and
Kutlar
,
O. A.
,
2019
, “
Comparison of Fow Feld and Combustion in Single and Double Side Ported Rotary Engine
,”
Fuel
,
254
, p.
115651
. 10.1016/j.fuel.2019.115651
19.
Lu
,
Y.
,
Pan
,
J.
,
Fan
,
B.
,
Otchere
,
P.
,
Chen
,
W.
, and
Cheng
,
B.
,
2019
, “
Research on the Application of Aviation Kerosene in a Direct Injection Rotary Engine—Part 1: Fundamental Spray Characteristics and Optimized Injection Strategies
,”
Energy Convers. Manage.
,
195
, pp.
519
532
. 10.1016/j.enconman.2019.05.042
20.
Kawahara
,
N.
,
Tomita
,
E.
,
Hayashi
,
K.
,
Tabata
,
M.
,
Iwai
,
K.
, and
Kagawa
,
R.
,
2007
, “
Cycle-Resolved Measurements of the Fuel Concentration Near a Spark Plug in a Rotary Engine Using an In Situ Laser Absorption Method
,”
P. Combust. Inst.
,
31
(
2
), pp.
3033
3040
. 10.1016/j.proci.2006.08.088
21.
Benthara Wadumesthrige
,
A.
,
Dong
,
H.
, and
Minkiewicz
,
G.
,
2012
, “
Optimal Heavy Fuel Direct Injection Analysis in a Rotary Engine Using a Computational Combustion Model
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
1275
.
22.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Liu
,
Y.
,
Bani
,
S.
, and
Chen
,
W.
,
2017
, “
Numerical Investigation of the Effect of Injection Strategy on Mixture Formation and Combustion Process in a Port Injection Natural Gas Rotary Engine
,”
Energy Convers. Manage.
,
133
, pp.
511
523
. 10.1016/j.enconman.2016.10.070
23.
Kumar Agarwal
,
A.
,
Gadekar
,
S.
, and
Pratap Singh
,
A.
,
2018
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012207
. 10.1115/1.4037686
24.
Abo-Elfadl
,
S.
, and
Mohamed
,
A. E. S.
,
2018
, “
The Effect of the Helical Inlet Port Design and the Shrouded Inlet Valve Condition on Swirl Generation in Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032203
. 10.1115/1.4037941
25.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S. A.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122202
. 10.1115/1.4041543
26.
El-Adawy
,
M.
,
Heikal
,
M. R.
, and
Aziz
,
A. R. A.
,
2019
, “
Stereoscopic Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of the In-Cylinder Flow of Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042204
. 10.1115/1.4042068
27.
Warren
,
S.
, and
Yang
,
D. C. H.
,
2013
, “
Design of Rotary Engines From the Apex Seal Profile (Abbr.: Rotary Engine Design by Apex Seal)
,”
Mech. Mach. Theory
,
64
, pp.
200
209
. 10.1016/j.mechmachtheory.2013.01.015
28.
DeFilippis
,
M.
,
Hamady
,
F.
,
Novak
,
M.
, and
Schock
,
H.
,
1992
, “
Effects of Pocket Configuration on the Flow Field in a Rotary Engine Assembly
,” SAE Technical Paper No. 920300.
29.
Hamady
,
F.
,
Stuecken
,
T.
, and
Schock
,
H.
,
1990
, “
Airflow Visualization and LDV Measurements in a Motored Rotary Engine Assembly Part 1: Flow Visualization
,” SAE Technical Paper 900030.
30.
Hasegawa
,
Y.
, and
Yamaguchi
,
K.
,
1993
, “
An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine
,” SAE Technical Paper 930678.
31.
Maki
,
T.
,
Moriyoshi
,
Y.
,
Okui
,
N.
, and
Tabata
,
M.
,
2008
, “
PIV Measurement of Flow Field in a Rotary Engine
,”
Trans. Visual. Soc. Japan
,
28
(
1
), pp.
205
206
.
32.
Fan
,
B.
,
Pan
,
J.
,
Tang
,
A.
,
Pan
,
Z.
,
Zhu
,
Y.
, and
Xue
,
H.
,
2015
, “
Experimental and Numerical Investigation of the Fluid Flow in a Side-Ported Rotary Engine
,”
Energy Convers. Manage.
,
95
, pp.
385
397
. 10.1016/j.enconman.2015.02.047
33.
Hwang
,
P. W.
,
Chen
,
X. C.
, and
Cheng
,
H. C.
,
2016
, “
Influences of Ignition Timing, Spark Plug and Intake Port Locations on the Combustion Performance of a Simulated Rotary Engine
,”
J. Mech.
,
32
(
5
), pp.
579
591
. 10.1017/jmech.2016.39
34.
Spreitzer
,
J.
,
Zahradnik
,
F.
, and
Geringer
,
B.
,
2015
, “
Implementation of a Rotary Engine (Wankel Engine) in a CFD Simulation Tool With Special Emphasis on Combustion and Flow Phenomena
,” SAE Paper No. 2015-01-0382.
35.
Jeng
,
D. Z.
,
Hsieh
,
M. J.
,
Lee
,
C. C.
, and
Han
,
Y.
,
2013
, “
The Numerical Investigation on the Performance of Rotary Engine with Leakage, Different Fuels and Recess sizes
,” SAE Paper No. 2013-32-9160.
36.
Harikrishnan
,
T. V.
,
Challa
,
S.
, and
Radhakrishna
,
D.
,
2016
, “
Numerical Investigation on the Effects of Flame Propagation in Rotary Engine Performance With Leakage and Different Recess Shapes Using Three-Dimensional Computational Fluid Dynamics
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052210
. 10.1115/1.4033572
37.
Fan
,
B.
,
Pan
,
J.
,
Liu
,
Y.
, and
Zhu
,
Y.
,
2015
, “
Effects of Ignition Parameters on Combustion Process of a Rotary Engine Fueled With Natural Gas
,”
Energy Convers. Manage.
,
103
, pp.
218
234
. 10.1016/j.enconman.2015.06.055
38.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
. 10.1016/j.jcp.2004.10.018
39.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG-k-ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
. 10.1080/00102209508907782
This content is only available via PDF.
You do not currently have access to this content.