Abstract

Supercritical carbon dioxide Brayton power cycle is getting commercially attractive for power generation due to numerous advantages like zero water usage, compactness, low environmental emission, and potential to reach high thermal efficiency at lower costs. A typical recuperated closed cycle consists of three heat exchangers (main heat exchanger, cooler, and recuperator) and two turbomachinery (turbine and compressor). Rapid changes in ambient temperature, operating loads, start-ups, and shutdowns affect the performance and operation of the turbomachinery and heat exchangers. The purpose of this research article is to study the thermodynamic parameters of the air cooler during transient operations by running dynamic simulations. Magnitude of change in carbon dioxide temperature due to change in air temperature is calculated. The simulation is a setup by having a steady-state design of 100 MWe cycle with operating temperature of 700 °C and pressure of 250 bar. Dynamic simulations are done using lms amesim. Transients studied in this article include: (i) step variation, (ii) standard variation, and (iii) linear variation of air temperature. This study thus serves as a framework to develop a design and control basis governed by transient scenarios.

References

1.
Capuano
,
L.
,
2018
,
International Energy Outlook 2018 (ieo2018)
,
US Energy Information Administration (EIA)
,
Washington, DC
, p.
21
.
2.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “
Reference Fluid Thermodynamic and Transport Properties—REFPROP, version 8.0
,” NIST Standard Reference Database, p.
23
.
3.
Dostal
,
V.
,
Driscoll
,
M.
, and
Hejzlar
,
P.
,
2008
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
MA
.
4.
Bai
,
Z.
,
Zhang
,
G.
,
Yang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102001
. 10.1115/1.4043391
5.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
. 10.1115/1.4007196
6.
Sarkar
,
J.
,
2009
, “
Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
34
(
9
), pp.
1172
1178
. 10.1016/j.energy.2009.04.030
7.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
. 10.1016/j.apenergy.2015.03.090
8.
Franco
,
A.
, and
Vazquez
,
A. R. D.
,
2006
, “
A Thermodynamic Based Approach for the Multicriteria Assessment of Energy Conversion Systems
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
346
351
. 10.1115/1.2358149
9.
Crespi
,
F.
,
Śanchez
,
D.
,
Śanchez
,
T.
, and
Martínez
,
G. S.
,
2019
, “
Capital Cost Assessment of Concentrated Solar Power Plants Based on Supercritical Carbon Dioxide Power Cycles
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071011
. 10.1115/1.4042304
10.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
. 10.1115/1.4039446
11.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
. 10.1016/j.net.2015.06.009
12.
Kazemifar
,
F.
, and
Kyritsis
,
D. C.
,
2015
, “
Near-Critical CO2 Flow Measurement and Visualization
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012002
. 10.1115/1.4027961
13.
Jacob
,
F.
,
Rolt
,
A. M.
,
Sebastiampillai
,
J. M.
,
Sethi
,
V.
,
Belmonte
,
M.
, and
Cobas
,
P.
,
2017
, “
Performance of a Supercritical CO2 Bottoming Cycle for Aero Applications
,”
Appl. Sci.
,
7
(
3
), p.
255
. 10.3390/app7030255
14.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2008
, “
Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
2094
2105
. 10.1016/j.nucengdes.2007.11.012
15.
Baik
,
S.
,
Kim
,
S. G.
,
Bae
,
S. J.
,
Ahn
,
Y.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2015
, “
Preliminary Experimental Study of Precooler in Supercritical CO2 Brayton Cycle
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Palais des Congres, Montreal, Quebec, Canada
,
June 15–19
, American Society of Mechanical Engineers, p. V009T36A010.
16.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
. 10.1115/1.4038963
17.
Njoku
,
H. O.
,
Egbuhuzor
,
L. C.
,
Eke
,
M. N.
,
Enibe
,
S. O.
, and
Akinlabi
,
E. A.
,
2019
, “
Combined Pinch and Exergy Evaluation for Fault Analysis in a Steam Power Plant Heat Exchanger Network
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122001
. 10.1115/1.4043746
18.
Moisseytsev
,
A.
,
Lv
,
Q.
, and
Sienicki
,
J. J.
,
2017
, “
Heat Exchanger Options for Dry Air Cooling for the sCO2 Brayton Cycle
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte Convention Center, Charlotte, NC
,
June 26–30
, American Society of Mechanical Engineers, p. V009T38A006.
19.
Deshmukh
,
A.
, and
Kapat
,
J.
,
2020
, “
Pinch Point Analysis of Air Cooler in sCO2 Brayton Cycle Operating Over Ambient Temperature Range
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050909
.
20.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solarthermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
. 10.1016/j.apenergy.2013.06.020
21.
Fang
,
L.
,
Li
,
Y.
,
Yang
,
X.
, and
Yang
,
Z.
,
2020
, “
Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031301
. 10.1115/1.4045083
22.
Wang
,
K.
,
He
,
Y.-L.
, and
Zhu
,
H.-H.
,
2017
, “
Integration Between Supercritical CO2 Brayton Cycles and Molten Salt Solar Power Towers: A Review and a Comprehensive Comparison of Different Cycle Layouts
,”
Appl. Energy
,
195
, pp.
819
836
. 10.1016/j.apenergy.2017.03.099
23.
Clementoni
,
E. M.
,
Cox
,
T. L.
,
King
,
M. A.
, and
Rahner
,
K. D.
,
2017
, “
Transient Power Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte Convention Center, Charlotte, NC
,
June 26–30
.
24.
Ferrandi
,
C.
,
Iorizzo
,
F.
,
Mameli
,
M.
,
Zinna
,
S.
, and
Marengo
,
M.
,
2013
, “
Lumped Parameter Model of Sintered Heat Pipe: Transient Numerical Analysis and Validation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1280
1290
. 10.1016/j.applthermaleng.2012.07.022
You do not currently have access to this content.