Abstract

In this article, optimal design and advanced exergetic, exergoeconomic, and exergoenvironmental analyses of a trigeneration system for an office building based on integration flat plate solar collector and gas turbine have been performed. The proposed system includes a heat recovery steam generator, a steam turbine, a solar plate collector, and an absorption chiller. The transient simulation for solar calculation has been done using transys software. In addition, a computer code was built to compute conventional and advanced exergy, exergoeconomic, and exergoenvironmental evaluation dynamically. Furthermore, multiobjective optimization by NSGA-II and cuckoo Search algorithm with maximum exergetic efficiency, minimum total exergetic cost, and minimum exergetic environmental impacts has been carried out simultaneously. The results demonstrate that the three objective parameters have been enhanced. Also, the endogenous, exogenous, available, and unavailable parts of exergy destruction have been determined.

References

1.
Khoshgoftar Manesh
,
M. H.
,
Pouyan Rad
,
M.
, and
Rosen
,
M. A.
,
2018
, “
New Procedure for Determination of Availability and Reliability of Complex Cogeneration Systems by Improving the Approximated Markov Method
,”
Appl. Therm. Eng.
,
138
, pp.
62
71
. 10.1016/j.applthermaleng.2018.04.042
2.
Yang
,
G.
, and
Zhai
,
X.
,
2018
, “
Optimization and Performance Analysis of Solar Hybrid CCHP Systems Under Different Operation Strategies
,”
Appl. Therm. Eng.
,
133
, pp.
327
340
. 10.1016/j.applthermaleng.2018.01.046
3.
Cardona
,
E.
, and
Piacentino
,
A.
,
2004
, “
A Validation Methodology for a Combined Heating Cooling and Power (CHCP) Pilot Plant
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
285
292
. 10.1115/1.1803849
4.
Szega
,
M.
, and
Żymełka
,
P.
,
2018
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
. 10.1115/1.4037369
5.
López Vega
,
A.
,
Rubio-Maya
,
C.
,
Kowalski
,
G. J.
, and
Pacheco Ibarra
,
J. J.
,
2020
, “
Analysis of the Design and Operation of a Hybrid Trigeneration-Photovoltaic System Installed in a Shopping Mall
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012101
. 10.1115/1.4044974
6.
Żymełka
,
P.
,
Szega
,
M.
, and
Madejski
,
P.
,
2019
, “
Techno-Economic Optimization of Electricity and Heat Production in a Gas-Fired Combined Heat and Power Plant With a Heat Accumulator
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022101
. 10.1115/1.4044886
7.
Khoshgoftar Manesh
,
M. H.
, and
Ameryan
,
M.
,
2016
, “
Optimal Design of a Solar-Hybrid Cogeneration Cycle Using Cuckoo Search Algorithm
,”
Appl. Therm. Eng.
,
102
, pp.
1300
1313
. 10.1016/j.applthermaleng.2016.03.156
8.
Khaliq
,
A.
,
Alharthi
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051003
. 10.1115/1.4046389
9.
Fallah
,
M.
,
Siyahi
,
H.
,
Ghiasi
,
R. A.
,
Mahmoudi
,
S.
,
Yari
,
M.
, and
Rosen
,
M.
,
2016
, “
Comparison of Different gas Turbine Cycles and Advanced Exergy Analysis of the Most Effective
,”
Energy
,
116
, pp.
701
715
. 10.1016/j.energy.2016.10.009
10.
Açıkkalp
,
E.
,
Aras
,
H.
, and
Hepbasli
,
A.
,
2014
, “
Advanced Exergy Analysis of an Electricity-Generating Facility Using Natural gas
,”
Energy Convers. Manage.
,
82
, pp.
146
153
. 10.1016/j.enconman.2014.03.006
11.
Bou Nader
,
W.
,
Breque
,
F.
,
Mazloum
,
Y.
,
Dumand
,
C.
, and
Nemer
,
M.
,
2020
, “
Dynamic Modeling and Fuel Consumption Potential of an Intercooled Regenerative Reheat Gas Turbine Auxiliary Power Unit on Series Hybrid Electric Vehicle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012203
. 10.1115/1.4044366
12.
Hasan
,
A.
, and
Dincer
,
I.
,
2020
, “
A New Integrated Ocean Thermal Energy Conversion-Based Trigeneration System for Sustainable Communities
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061301
. 10.1115/1.4045469
13.
Yuksel
,
Y. E.
,
Ozturk
,
M.
, and
Dincer
,
I.
,
2020
, “
Development of a Geothermal-Based Integrated Plant for Generating Clean Hydrogen and Other Useful Commodities
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092102
. 10.1115/1.4046728
14.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
. 10.1115/1.4044562
15.
Seckin
,
C.
,
2020
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012001
. 10.1115/1.4044220
16.
Cavalcanti
,
E. J. C.
,
2017
, “
Exergoeconomic and Exergoenvironmental Analyses of an Integrated Solar Combined Cycle System
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
507
519
. 10.1016/j.rser.2016.09.017
17.
Vazini Modabber
,
H.
, and
Khoshgoftar Manesh
,
M. H.
,
2019
, “
Exergetic, Exergoeconomic and Exergoenvironmental Multi-Objective Genetic Algorithm Optimization of Qeshm Power and Water Cogeneration Plant
,”
Gas Process. J.
,
7
(
2
), pp.
1
28
.
18.
Khoshgoftar Manesh
,
M. H.
,
Navid
,
P.
,
Blanco Marigorta
,
A. M.
,
Amidpour
,
M.
, and
Hamedi
,
M. H.
,
2013
, “
New Procedure for Optimal Design and Evaluation of Cogeneration System Based on Advanced Exergoeconomic and Exergoenvironmental Analyses
,”
Energy
,
59
, pp.
314
333
. 10.1016/j.energy.2013.06.017
19.
Janalizadeh
,
H.
,
Khoshgoftar Manesh
,
M. H.
, and
Amidpour
,
M.
,
2015
, “
Exergoeconomic and Exergoenvironmental Evaluation of Integration of Desalinations With a Total Site Utility System
,”
Clean Technol. Environ. Policy
,
17
(
1
), pp.
103
117
. 10.1007/s10098-014-0765-0
20.
Khoshgoftar Manesh
,
M. H.
,
Ghalami
,
H.
,
Amidpour
,
M.
, and
Hamedi
,
M. H.
,
2013
, “
Optimal Coupling of Site Utility Steam Network With MED-RO Desalination Through Total Site Analysis and Exergoeconomic Optimization
,”
Desalination
,
316
, pp.
42
52
. 10.1016/j.desal.2013.01.022
21.
Rad
,
M. P.
,
Khoshgoftar Manesh
,
M. H.
,
Rosen
,
M. A.
,
Amidpour
,
M.
, and
Hamedi
,
M. H.
,
2016
, “
New Procedure for Design and Exergoeconomic Optimization of Site Utility System Considering Reliability
,”
Appl. Therm. Eng.
,
94
, pp.
478
490
. 10.1016/j.applthermaleng.2015.10.091
22.
Morosuk
,
T.
,
Tsatsaronis
,
G.
,
Boyano
,
A.
, and
Gantiva
,
C.
,
2012
, “
Advanced Exergy-Based Analyses Applied to a System Including LNG Regasification and Electricity Generation
,”
Int. J. Energy Environ. Eng.
,
3
(
1
), p.
1
. 10.1186/2251-6832-3-1
23.
Tsatsaronis
,
G.
,
2008
, “
Recent Developments in Exergy Analysis and Exergoeconomics
,”
Int. J. Exergy
,
5
(
5–6
), pp.
489
499
. 10.1504/IJEX.2008.020822
24.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2006
, “
The ‘Cycle Method’ Used in the Exergy Analysis of Refrigeration Machines: From Education to Research
,”
Proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
Aghia Pelagia
,
Crete, Greece
,
July 12–14
, pp.
157
163
.
25.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2006
, “
Splitting the Exergy Destruction Into Endogenous and Exogenous Parts—Application to Refrigeration Machines
,”
Proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
Aghia Pelagia, Crete, Greece
,
July 12–14
, pp.
165
172
.
26.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
. 10.1016/j.energy.2007.09.012
27.
Tsatsaronis
,
G.
, and
Morosuk
,
T. V.
,
2007
, “
Advanced Exergoeconomic Evaluation and its Application to Compression Refrigeration Machines
,”
Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 6: Energy Systems: Analysis, Thermodynamics and Sustainability
,
Seattle, WA
,
Nov. 11–15
,
American Society of Mechanical Engineers
, pp.
311
317
.
28.
Kelly
,
S.
,
2008
, “
Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction
,” Doctoral thesis, Technische Universität Berlin, Berlin.
29.
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2007
, “
Advanced Exergoeconomic Evaluation and Its Application to Compression Refrigeration Machines
,”
ASME 2007 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
, pp.
859
868
.
30.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
How to Calculate the Parts of Exergy Destruction in an Advanced Exergetic Analysis
,”
Proceedings of the 21st International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems
,
Cracow, Gliwice, Poland
,
June 24–27
, pp.
185
194
.
31.
Tsatsaronis
,
G.
, and
Park
,
M.-H.
,
2002
, “
On Avoidable and Unavoidable Exergy Destructions and Investment Costs in Thermal Systems
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1259
1270
. 10.1016/S0196-8904(02)00012-2
32.
Cziesla
,
F.
,
Tsatsaronis
,
G.
, and
Gao
,
Z.
,
2006
, “
Avoidable Thermodynamic Inefficiencies and Costs in an Externally Fired Combined Cycle Power Plant
,”
Energy
,
31
(
10–11
), pp.
1472
1489
. 10.1016/j.energy.2005.08.001
33.
Khosravi
,
H.
,
Salehi
,
G. R.
, and
Azad
,
M. T.
,
2019
, “
Design of Structure and Optimization of Organic Rankine Cycle for Heat Recovery From gas Turbine: The use of 4E, Advanced Exergy and Advanced Exergoeconomic Analysis
,”
Appl. Therm. Eng.
,
147
, pp.
272
290
. 10.1016/j.applthermaleng.2018.09.128
34.
Ghorbani
,
S.
, and
Khoshgoftar Manesh
,
M. H.
,
2020
, “
Conventional and Advanced Exergetic and Exergoeconomic Analysis of an IRSOFC-GT-ORC Hybrid System
,”
Gas Process. J.
,
8
(
1
), pp.
1
16
.
35.
Manesh
,
M. H. K.
, and
Rosen
,
M. A.
,
2018
, “
Combined Cycle and Steam Gas-Fired Power Plant Analysis Through Exergoeconomic and Extended Combined Pinch and Exergy Methods
,”
J. Energy Eng.
,
144
(
2
), p.
04018010
. 10.1061/(ASCE)EY.1943-7897.0000506
36.
Khoshgoftar Manesh
,
M. H.
and
Amidpour
,
M.
,
2008
, “
New Graphical Methodology for Energy Integration in Nuclear Steam Power Plant
.”
37.
Tian
,
M.
,
Hou
,
K.
,
Wang
,
Z.
, and
Wan
,
Z.
,
2017
, “
An Improved Cuckoo Search Algorithm for Multi-Objective Optimization
,”
Wuhan Univ. J. Nat. Sci.
,
22
(
4
), pp.
289
294
. 10.1007/s11859-017-1249-y
38.
Yang
,
X.-S.
, and
Deb
,
S.
,
2013
, “
Multiobjective Cuckoo Search for Design Optimization
,”
Comput. Oper. Res.
,
40
(
6
), pp.
1616
1624
. 10.1016/j.cor.2011.09.026
You do not currently have access to this content.