Abstract

Although model predictions of thermal energy storage (TES) performance have been explored in previous investigations, relevant test data that enable experimental validation of performance models have been limited. This is particularly true for high-performance TES designs that facilitate fast input and extraction of energy. In this paper, we present a summary of experimental tests of a high-performance TES unit using lithium nitrate trihydrate phase change material as a storage medium. Performance data are presented for complete dual-mode cycles consisting of extraction (melting) followed by charging (freezing). These tests simulate the cyclic operation of a TES unit for asynchronous cooling in a variety of applications. The model analysis is found to agree reasonably well, within 10%, with the experimental data except for conditions very near the initiation of freezing, a consequence of subcooling that is required to initiate solidification.

References

References
1.
Shamsundar
,
N.
, and
Srinivasan
,
R.
,
1980
, “
Effectiveness-NTU Charts for Heat Recovery From Latent Heat Storage Units
,”
ASME J. Sol. Energy Eng.
,
102
(
4
), pp.
263
271
. 10.1115/1.3266190
2.
Bellecci
,
C.
, and
Conti
,
M.
,
1993
, “
Transient Behaviour Analysis of a Latent Heat Thermal Storage Module
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3851
3857
. 10.1016/0017-9310(93)90065-E
3.
Ismail
,
K.
, and
Goncalves
,
M.
,
1999
, “
Thermal Performance of a PCM Storage Unit
,”
Energy Convers. Manage.
,
40
(
2
), pp.
115
138
. 10.1016/S0196-8904(98)00042-9
4.
Alkilani
,
M.
,
Sopian
,
K.
,
Mat
,
S.
, and
Alghoul
,
M.
,
2009
, “
Output Air Temperature Prediction in a Solar Air Heater Integrated With Phase Change Material
,”
Eur. J. Sci. Res.
,
27
(
3
), pp.
334
341
.
5.
Tay
,
N.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2012
, “
An Effectiveness-NTU Technique for Characterising Tube-in-Tank Phase Change Thermal Energy Storage Systems
,”
Appl. Energy
,
91
(
1
), pp.
309
319
. 10.1016/j.apenergy.2011.09.039
6.
Bony
,
J.
, and
Citherlet
,
S.
,
2007
, “
Numerical Model and Experimental Validation of Heat Storage With Phase Change Materials
,”
Energy Build.
,
39
(
10
), pp.
1065
1072
. 10.1016/j.enbuild.2006.10.017
7.
Hosseini
,
M.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2015
, “
Thermal Analysis of PCM Containing Heat Exchanger Enhanced With Normal Annular Fines
,”
Mech. Sci.
,
6
(
2
), pp.
221
234
. 10.5194/ms-6-221-2015
8.
Wu
,
J.
,
Tremeac
,
B.
,
Terrier
,
M.-F.
,
Charni
,
M.
,
Gagnière
,
E.
,
Couenne
,
F.
,
Hamroun
,
B.
, and
Jallut
,
C.
,
2016
, “
Experimental Investigation of the Dynamic Behavior of a Large-Scale Refrigeration—PCM Energy Storage System. Validation of a Complete Model
,”
Energy
,
116
(
1
), pp.
32
42
. 10.1016/j.energy.2016.09.098
9.
Waser
,
R.
,
Ghani
,
F.
,
Maranda
,
S.
,
O’Donovan
,
T.
,
Schuetz
,
P.
,
Zaglio
,
M.
, and
Worlitschek
,
J.
,
2018
, “
Fast and Experimentally Validated Model of a Latent Thermal Energy Storage Device for System Level Simulations
,”
Appl. Energy
,
231
(
1
), pp.
116
126
. 10.1016/j.apenergy.2018.09.061
10.
Sun
,
X.
,
Mo
,
Y.
,
Li
,
J.
,
Chu
,
Y.
,
Liu
,
L.
, and
Liao
,
S.
,
2020
, “
Study on the Energy Charging Process of a Plate-Type Latent Heat Thermal Energy Storage Unit and Optimization Using Taguchi Method
,”
Appl. Therm. Eng.
,
164
(
1
), p.
114528
. 10.1016/j.applthermaleng.2019.114528
11.
Helmns
,
A.
, and
Carey
,
V. P.
,
2016
, “
Modeling of Heat Transfer and Energy Efficiency Performance of Transient Cold Storage in Phase Change Thermal Storage Components
,”
ASME 2016 Heat Transfer Summer Conference
,
Washington, DC
,
July 10–14
, American Society of Mechanical Engineers, p. V001T05A009.
12.
Helmns
,
A.
, and
Carey
,
V. P.
,
2017
, “
Modeling of Intramatrix Heat Transfer in Thermal Energy Storage for Asynchronous Cooling
,”
ASME 2017 Heat Transfer Summer Conference
,
Bellevue, WA
,
July 9–12
, American Society of Mechanical Engineers, p. V001T09A006.
13.
Theroff
,
Z. M.
,
Helmns
,
D.
, and
Carey
,
V. P.
,
2018
, “
Exploration of Variable Conductance Effects During Input and Extraction of Heat From Phase Change Thermal Storage
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 11–14
, American Society of Mechanical Engineers.
14.
Helmns
,
A.
, and
Carey
,
V. P.
,
2018
, “
Multiscale Transient Modeling of Latent Energy Storage for Asynchronous Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051004
. 10.1115/1.4039460
15.
Gagnon
,
L. B.
,
Helmns
,
D.
, and
Carey
,
V. P.
,
2018
, “
Multiscale Modeling of Power Plant Performance Enhancement Using Asynchronous Thermal Storage and Heat Rejection
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 11–14
, American Society of Mechanical Engineers.
16.
Gagnon
,
L.
,
Helmns
,
D.
, and
Carey
,
V. P.
,
2020
, “
Multiscale Modeling of Power Plant Performance Enhancement Utilizing Asynchronous Cooling With Thermal Energy Storage
,”
ASME J. Heat Transfer
,
142
(
5
), p.
052905
. 10.1115/1.4046773
17.
Kumar
,
N.
, and
Banerjee
,
D.
,
2018
, “Phase Change Materials,”
Handbook of Thermal Science and Engineering
,
Springer International Publishing
,
Cham, Switzerland
, pp.
2213
2275
.
18.
Shamberger
,
P. J.
, and
Reid
,
T.
,
2012
, “
Thermophysical Properties of Lithium Nitrate Trihydrate From (253 to 353) K
,”
J. Chem. Eng. Data
,
57
(
5
), pp.
1404
1411
. 10.1021/je3000469
19.
Kumar
,
N.
, and
Banerjee
,
D.
,
2018
, “
A Comprehensive Review of Salt Hydrates as Phase Change Materials (PCMs)
,”
Int. J. Transp. Phenom.
,
15
(
1
), pp.
65
89
.
20.
Meseguer
,
J.
,
Pérez-Grande
,
I.
, and
Sanz-Andrés
,
A.
,
2012
,
Spacecraft Thermal Control
,
Elsevier
,
New York
.
You do not currently have access to this content.