Abstract

When analyzing and optimizing the performance of thermoelectric (TE) devices in theory, Seebeck coefficient, thermal conductivity, and electrical resistivity are indispensable TE properties. However, most manufacturers do not provide or overestimate these data. Under the consideration of temperature dependence, this paper discloses an experimental measurement approach to estimate the equivalent Seebeck coefficient, thermal conductivity, and electrical resistivity of a TE module. A thermal resistance network is also established to work out the hot and cold side temperatures of TE legs. Based on a designed test bench, required temperature and electrical parameters in both open circuit and closed circuit are measured and recorded, where the data of open circuit are used to calculate the equivalent Seebeck coefficient and thermal conductivity, and the data of closed circuit are used to calculate the equivalent electrical resistivity. To eliminate the error of parasitic internal resistance, a thermal-electric finite element model is adopted to modify the equivalent electrical resistivity. The modification results indicate that the equivalent internal resistance is about 1.033 times the real internal resistance, and the ratio is related to the working temperature. This work provides a new idea to obtain the TE material properties via an experimental test.

References

References
1.
Siddique
,
A. R. M.
,
Mahmud
,
S.
, and
Heyst
,
B. V.
,
2017
, “
A Review of the State of the Science on Wearable Thermoelectric Power Generators (TEGs) and Their Existing Challenges
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
730
744
. 10.1016/j.rser.2017.01.177
2.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
,
Sun
,
Z.
, and
Meng
,
X.
,
2019
, “
Modelling and Simulation Study of a Converging Thermoelectric Generator for Engine Waste Heat Recovery
,”
Appl. Therm. Eng.
,
153
, pp.
837
847
. 10.1016/j.applthermaleng.2019.03.060
3.
Ran
,
Y.
,
Deng
,
Y.
,
Hu
,
T.
,
Su
,
C.
, and
Liu
,
X.
,
2018
, “
Energy Efficient Thermoelectric Generator-Powered Localized Air-Conditioning System Applied in a Heavy-Duty Vehicle
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
072007
. 10.1115/1.4039607
4.
Venkateshwar
,
K.
,
Raihan Mohammad Siddique
,
A.
,
Tasnim
,
S.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2020
, “
Thermoelectric Generator–Integrated Solar Air Heater: A Compact Passive System
,”
ASME J. Energy Res. Technol.
,
143
(
4
), p.
042102
. 10.1115/1.4048065
5.
Meng
,
J.-H.
,
Wang
,
X.-D.
, and
Zhang
,
X.-X.
,
2013
, “
Transient Modeling and Dynamic Characteristics of Thermoelectric Cooler
,”
Appl. Energy
,
108
, pp.
340
348
. 10.1016/j.apenergy.2013.03.051
6.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
Parametric Study of a Thermoelectric Module Used for Both Power Generation and Cooling
,”
Renewable Energy
,
154
, pp.
542
552
. 10.1016/j.renene.2020.03.045
7.
Liang
,
X.
,
Sun
,
X.
,
Tian
,
H.
,
Shu
,
G.
,
Wang
,
Y.
, and
Wang
,
X.
,
2014
, “
Comparison and Parameter Optimization of a Two-Stage Thermoelectric Generator Using High Temperature Exhaust of Internal Combustion Engine
,”
Appl. Energy
,
130
, pp.
190
199
. 10.1016/j.apenergy.2014.05.048
8.
Rowe
,
D. M.
,
2005
,
Thermoelectrics Handbook: Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
9.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
A Numerical Study on the Performance of a Converging Thermoelectric Generator System Used for Waste Heat Recovery
,”
Appl. Energy
,
270
, p.
115181
. 10.1016/j.apenergy.2020.115181
10.
Kim
,
S. J.
,
We
,
J. H.
, and
Cho
,
B. J.
,
2014
, “
A Wearable Thermoelectric Generator Fabricated on a Glass Fabric
,”
Energy Environ. Sci.
,
7
(
6
), pp.
1959
1965
. 10.1039/c4ee00242c
11.
Abdel Hakim
,
B.
,
2020
, “
Thermoelectric Energy Storage Using Auxiliary Solar Thermal and Geothermal Energy
,”
ASME J. Energy Res. Technol.
,
142
(
8
), p.
082002
. 10.1115/1.4046224
12.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Res. Technol.
,
142
(
12
), p.
121302
. 10.1115/1.4047324
13.
LaLonde
,
A. D.
,
Pei
,
Y.
,
Wang
,
H.
, and
Jeffrey Snyder
,
G.
,
2011
, “
Lead Telluride Alloy Thermoelectrics
,”
Mater. Today
,
14
(
11
), pp.
526
532
. 10.1016/S1369-7021(11)70278-4
14.
Naphon
,
P.
, and
Wiriyasart
,
S.
,
2009
, “
Liquid Cooling in the Mini-rectangular fin Heat Sink With and Without Thermoelectric for CPU
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
166
171
. 10.1016/j.icheatmasstransfer.2008.10.002
15.
Choi
,
H.-S.
,
Yun
,
S.
, and
Whang
,
K.-i.
,
2007
, “
Development of a Temperature-Controlled Car-Seat System Utilizing Thermoelectric Device
,”
Appl. Therm. Eng.
,
27
(
17-18
), pp.
2841
2849
. 10.1016/j.applthermaleng.2006.09.004
16.
Gillott
,
M.
,
Jiang
,
L.
, and
Riffat
,
S.
,
2010
, “
An Investigation of Thermoelectric Cooling Devices for Small-Scale Space Conditioning Applications in Buildings
,”
Int. J. Energy Res.
,
34
(
9
), pp.
776
786
. 10.1002/er.1591
17.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), p.
1457
1461
. 10.1126/science.1158899
18.
Raihan Mohammad Siddique
,
A.
,
Kratz
,
F.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2019
, “
Energy Conversion by Nanomaterial-Based Trapezoidal-Shaped Leg of Thermoelectric Generator Considering Convection Heat Transfer Effect
,”
ASME J. Energy Res. Technol.
,
141
(
8
), p.
082001
. 10.1115/1.4042644
19.
Hsu
,
C.-T.
,
Huang
,
G.-Y.
,
Chu
,
H.-S.
,
Yu
,
B.
, and
Yao
,
D.-J.
,
2011
, “
An Effective Seebeck Coefficient Obtained by Experimental Results of a Thermoelectric Generator Module
,”
Appl. Energy
,
88
(
12
), pp.
5173
5179
. 10.1016/j.apenergy.2011.07.033
20.
Lan
,
S.
,
Yang
,
Z.
,
Chen
,
R.
, and
Stobart
,
R.
,
2018
, “
A Dynamic Model for Thermoelectric Generator Applied to Vehicle Waste Heat Recovery
,”
Appl. Energy
,
210
, pp.
327
338
. 10.1016/j.apenergy.2017.11.004
21.
Luo
,
D.
,
Wang
,
R.
, and
Yu
,
W.
,
2019
, “
Comparison and Parametric Study of Two Theoretical Modeling Approaches Based on an Air-to-Water Thermoelectric Generator System
,”
J. Power Sources
,
439
, p.
227069
. 10.1016/j.jpowsour.2019.227069
22.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2019
, “
Performance Evaluation of a Novel Thermoelectric Module With BiSbTeSe-Based Material
,”
Appl. Energy
,
238
, pp.
1299
1311
. 10.1016/j.apenergy.2019.01.139
23.
Meng
,
J.-H.
,
Zhang
,
X.-X.
, and
Wang
,
X.-D.
,
2015
, “
Characteristics Analysis and Parametric Study of a Thermoelectric Generator by Considering Variable Material Properties and Heat Losses
,”
Int. J. Heat Mass Transfer
,
80
, pp.
227
235
. 10.1016/j.ijheatmasstransfer.2014.09.023
24.
Buchalik
,
R.
,
Nowak
,
I.
,
Rogozinski
,
K.
, and
Nowak
,
G.
,
2019
, “
Detailed Model of a Thermoelectric Generator Performance
,”
ASME J. Energy Res. Technol.
,
142
(
2
), p.
021601
. 10.1115/1.4044367
25.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
Parametric Study of Asymmetric Thermoelectric Devices for Power Generation
,”
Int. J. Energy Res.
,
44
(
8
), pp.
6950
6963
. 10.1002/er.5461
26.
Fraisse
,
G.
,
Ramousse
,
J.
,
Sgorlon
,
D.
, and
Goupil
,
C.
,
2013
, “
Comparison of Different Modeling Approaches for Thermoelectric Elements
,”
Energy Convers. Manage.
,
65
, pp.
351
356
. 10.1016/j.enconman.2012.08.022
27.
Sandoz-Rosado
,
E.
, and
Stevens
,
R.
,
2010
, “
Robust Finite Element Model for the Design of Thermoelectric Modules
,”
J. Electron. Mater.
,
39
(
9
), pp.
1848
1855
. 10.1007/s11664-010-1077-8
28.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
A Novel Optimization Method for Thermoelectric Module Used in Waste Heat Recovery
,”
Energy Convers. Manage.
,
209
, p.
112645
. 10.1016/j.enconman.2020.112645
29.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
Performance Optimization of a Converging Thermoelectric Generator System via Multiphysics Simulations
,”
Energy
,
204
, p.
117974
. 10.1016/j.energy.2020.117974
You do not currently have access to this content.