Abstract

Due to the increase in the greenhouse effect, lowering emissions is becoming a certain issue all over the world. It is a concern to develop alternative options to minimize the spread of exhaust gases. For this purpose, in this study, the plug flow reactor in the system consisting of solid oxide fuel cell, reactor, electric motor, battery, burner, and the heat exchanger is considered. Numerical modeling of hydrogen gas generation in a plug flow reactor is studied. The reactor indicated on-board hydrogen gas generation for an electric motor automobile has not been modeled in the literature yet. Autothermal reforming of isooctane is simulated in the comsol multiphysics software program in the reactor particularly. Conversion of isooctane and H2O is examined at different overall heat transfer coefficients, input temperatures, and steam/carbon ratios. Also, there are certain differences between adiabatic and non-adiabatic conditions. The produced synthesis gas of hydrogen drastically increases in the non-adiabatic case. The obtained results from the model are compared with experimental data obtained from the literature. H2 production at the end of the autothermal reforming process indicates that the power provided from the reactor can operate a motor of an automobile. In this study, the achieved power is 65.8 kW (88 HP) and is sufficient for an automobile. Simulation results show that the reactor volume of 75 L supplies 0.18 mol−1 of H2 and 0.08 mol−1 of CO in the non-adiabatic case.

References

1.
Wang
,
W.
,
Herreros
,
J. M.
,
Tsolakis
,
A.
,
York
,
A.
, and
York
,
P.
,
2013
, “
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9907
9917
.
2.
Rostrup-Nielsen
,
J. R.
, and
Rostrup-Nielsen
,
T.
,
2001
, “
Large-Scale Hydrogen Production
,”
6th World Congress of Chemical Engineering
,
Melbourne, Australia
,
Sept. 23–27
, pp.
150
159
.
3.
Pacheco
,
M.
,
Sira
,
J.
, and
Kopasz
,
J.
,
2003
, “
Reaction Kinetics and Reactor Modeling for Fuel Processing of Liquid Hydrocarbons to Produce Hydrogen: Isooctane Reforming
,”
Appl. Catal. A
,
250
(
1
), pp.
161
175
.
4.
Fitzgerald
,
S. P.
,
Wegeng
,
R.
,
Tonkovich
,
A.
,
Wang
,
Y.
,
Freeman
,
H.
,
Marco
,
J.
, and
VanderWeil
,
D.
,
2000
, “
A Compact Steam Reforming Reactor for Use in an Automotive Fuel Processor
,”
Proceedings of the Fourth International Conference on Microreaction Technology
,
Atlanta, GA
,
Mar. 5–9
, pp.
358
363
.
5.
Martin
,
S.
,
Kraaij
,
G.
,
Ascher
,
T.
,
Baltzopoulou
,
P.
,
Karagiannakis
,
G.
,
Wails
,
D.
, and
Wörner
,
A.
,
2015
, “
Direct Steam Reforming of Diesel and Diesel-Biodiesel Blends for Distributed Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
75
84
.
6.
Ju
,
D. G.
,
Jo
,
S. B.
,
Ha
,
D. S.
,
Kim
,
T. Y.
,
Jung
,
S. Y.
,
Chae
,
H. J.
,
Lee
,
S. C.
, and
Kim
,
J. C.
,
2019
, “
Enhanced Ni–Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel
,”
Catalysts
,
9
(
7
), p.
573
.
7.
De Castro
,
J.
,
Rivera-Tinoco
,
R.
, and
Bouallou
,
C.
,
2010
, “
Hydrogen Production From Natural Gas: Auto-Thermal Reforming and CO2 Capture
,”
Chem. Eng. Trans.
,
21
, pp.
163
168
.
8.
Bshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Ramakrishnan
,
R.
, and
Ebshish
,
A.
,
2011
, “
Steam-Reforming of Ethanol for Hydrogen Production
,”
Chem. Pap.
,
65
(
3
), pp.
251
266
.
9.
Holgado
,
M.
, and
Alique
,
D.
,
2019
, “
Preliminary Equipment Design for On-Board Hydrogen Production by Steam Reforming in Palladium Membrane Reactors
,”
Chem. Eng.
,
3
(
1)
, p.
6
.
10.
Nahar
,
G.
, and
Dupont
,
V.
,
2013
, “
Recent Advances in Hydrogen Production Via Autothermal Reforming Process (ATR): A Review of Patents and Research Articles
,”
Recent Pat. Chem. Eng.
,
6
(
1
), pp.
8
42
.
11.
Dou
,
B.
,
Song
,
Y.
,
Wang
,
C.
,
Chen
,
H.
, and
Xu
,
Y.
,
2014
, “
Hydrogen Production From Catalytic Steam Reforming of Biodiesel Byproduct Glycerol: Issues and Challenges
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
950
960
.
12.
Elam
,
C. C.
,
Padró
,
C. E. G.
,
Sandrock
,
G.
,
Luzzi
,
A.
,
Lindblad
,
P.
, and
Hagen
,
E. F.
,
2003
, “
Realizing the Hydrogen Future: The International Energy Agency’s Efforts to Advance Hydrogen Energy Technologies
,”
Int. J. Hydrogen Energy
,
28
(
6
), pp.
601
607
.
13.
Mazloomi
,
K.
, and
Gomes
,
C.
,
2012
, “
Hydrogen as an Energy Carrier: Prospects and Challenges
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
3024
3033
.
14.
Ogden
,
J. M.
,
1999
, “
Prospects for Building a Hydrogen Energy Infrastructure
,”
Annu. Rev. Energy
,
24
(
1
), pp.
227
279
.
15.
Cipriani
,
G.
,
Di Dio
,
V.
,
Genduso
,
F.
,
La Cascia
,
D.
,
Liga
,
R.
,
Miceli
,
R.
, and
Galluzzo
,
G. R.
,
2014
, “
Perspective on Hydrogen Energy Carrier and Its Automotive Applications
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8482
8494
.
16.
Rosen
,
M. A.
, and
Koohi-Fayegh
,
S.
,
2016
, “
The Prospects for Hydrogen as an Energy Carrier: An Overview of Hydrogen Energy and Hydrogen Energy Systems
”,
Energy Ecol. Environ.
,
1
(
1
), pp.
10
29
.
17.
McCay
,
M. H.
, and
Shafiee
,
S.
,
2020
, “Hydrogen: An Energy Carrier,”
Future Energy
,
T. M.
Letcher
, ed.,
Elsevier
,
New York
, pp.
475
493
.
18.
Aicher
,
T.
,
Lenz
,
B.
,
Gschnell
,
F.
,
Groos
,
U.
,
Federici
,
F.
,
Caprile
,
L.
, and
Parodi
,
L.
,
2006
, “
Fuel Processors for Fuel Cell APU Applications
,”
J. Power Sources
,
154
(
2
), pp.
503
508
.
19.
Hariharan
,
D.
,
Yang
,
R.
,
Zhou
,
Y.
,
Gainey
,
B.
,
Mamalis
,
S.
,
Smith
,
R. E.
,
Lugo-Pimentelb
,
M. A.
,
Castaldib
,
M. J.
,
Gillc
,
R.
,
Davisc
,
A.
,
Modroukas
,
D.
, and
Lawlera
,
B.
,
2019
, “
Catalytic Partial Oxidation Reformation of Diesel, Gasoline, and Natural Gas for Use in Low Temperature Combustion Engines
,”
Fuel
,
246
, pp.
295
307
.
20.
Brandon
,
N. P.
, and
Thompsett
,
D.
,
2005
,
Fuel Cells Compendium
, 1st ed.,
Elsevier
,
New York
.
21.
Xu
,
X.
,
Zhang
,
S.
, and
Li
,
P.
,
2014
, “
Autothermal Reforming of n-Dodecane and Desulfurized Jet—A Fuel for Producing Hydrogen-Rich Syngas
,”
Int. J. Hydrogen Energy
,
39
(
34
), pp.
19593
19602
.
22.
LeValley
,
T. L.
,
Richard
,
A. R.
, and
Fan
,
M.
,
2014
, “
The Progress in Water Gas Shift and Steam Reforming Hydrogen Production Technologies: A Review
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
16983
17000
.
23.
Jung
,
S.-K.
,
Cha
,
W.-S.
,
Park
,
Y.-I.
,
Kim
,
S.-H.
, and
Choi
,
J.
,
2020
, “
Conceptual Design Development of a Fuel-Reforming System for Fuel Cells in Underwater Vehicles
,”
Energies
,
13
(
8), p.
2000
.
24.
Cao
,
C.
,
Xia
,
G.
,
Holladay
,
J.
,
Jones
,
E.
, and
Wang
,
Y.
,
2004
, “
Kinetic Studies of Methanol Steam Reforming Over Pd/ZnO Catalyst Using a Microchannel Reactor
,”
Appl. Catal. A
,
262
(
1
), pp.
19
29
.
25.
Lin
,
Y. M.
, and
Rei
,
M. H.
,
2000
, “
Process Development for Generating High Purity Hydrogen by Using Supported Palladium Membrane Reactor as Steam Reformer
,”
Int. J. Hydrogen Energy
,
25
(
3
), pp.
211
219
.
26.
Yan
,
Y.
,
Li
,
H.
,
Li
,
L.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2018
, “
Properties of Methane Autothermal Reforming to Generate Hydrogen in Membrane Reactor Based on Thermodynamic Equilibrium Model
,”
Chem. Eng. Process.
,
125
, pp.
311
317
.
27.
Rice
,
S. F.
, and
Mann
,
D. P.
,
2007
, “
Autothermal Reforming of Natural Gas to Synthesis Gas
,” SANDIA Report, SAND2007-2331.
28.
Palma
,
V.
,
Ricca
,
A.
,
Meloni
,
E.
,
Miccio
,
M.
,
Martino
,
M.
, and
Ciambelli
,
P.
,
2015
, “
Methane Steam Reforming Intensification: Experimental and Numerical Investigations on Monolithic Catalysts
,”
Chem. Eng. Trans.
,
43
, pp.
919
924
.
29.
Sadati
,
S. M.
,
Vousoughi
,
T. P.
, and
Eyvazi
,
M.
,
2015
, “
Hydrogen Production: Overview of Technology Options and Membrane in Auto-Thermal Reforming Including Partial Oxidation and Steam Reforming
,”
Int. J. Membr. Sci.
,
2
(
1
), pp.
56
67
.
30.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas-Shift. Part II. Intrinsic Kinetics
,”
Trans. Am. Inst. Chem. Eng.
,
35
(
1
), pp.
88
96
.
31.
Ibrahim
,
H. H.
, and
Idem
,
R. O.
,
2006
, “
Kinetic Studies of the Partial Oxidation of Isooctane for Hydrogen Production Over a Nickel–Alümina Catalyst
,”
Chem. Eng. Sci.
,
61
(
17
), pp.
5912
5918
.
32.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2017
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
, pp.
375
383
.
33.
Yarveicy
,
H.
,
Saghafi
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2019
, “
Decision Tree-Based Modeling of CO2 Equilibrium Absorption in Different Aqueous Solutions of Absorbents
,”
Environ. Prog. Sustain. Energy
,
38
(
s1
), pp.
S441
S448
.
34.
Rabe
,
S.
,
Vogel
,
F.
,
Truong
,
T. B.
,
Shimazu
,
T.
,
Wakasugi
,
T.
,
Aoki
,
H.
, and
Sobukawa
,
H.
,
2009
, “
Catalytic Reforming of Gasoline to Hydrogen: Kinetic Investigation of Deactivation Processes
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8023
8033
.
35.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas-Shift. Part I. Intrinsic Kinetics
,”
Trans. Am. Inst. Chem. Eng.
,
35
(1), pp.
88
96
.
You do not currently have access to this content.