Abstract

Radial flow turbines are extensively used in turbocharging technology due to their unique capability of handling a wide range of exhaust gas flow. The pulsating flow nature of the internal combustion engine exhaust gases causes unsteady operation of the turbine stage. This paper presents the impact of the pulsating flow of various characteristics on the performance of a radial flow turbine. A three-dimensional computational fluid dynamic model was coupled with a one-dimensional engine model to study the realistic pulsating flow. Applying square wave pulsating flow showed the highest degree of unsteadiness corresponding to 92.6% maximum mass flow accumulation due to the consecutive sudden changes of the mass flowrates over the entire pulse. Although sawtooth showed a maximum mass flow accumulation value of 88.9%, the mass flowrates entailed gradual change and resulted in the least overall mass flow accumulation over the entire pulse. These two extremes constrained the anticipated performance of the radial flow turbine that operates under realistic pulsating flow. Such constraints could develop an operating envelope to predict the performance and optimize radial flow turbines’ power extraction under pulsating flow conditions.

References

1.
Marelli
,
S.
,
Capobianco
,
M.
, and
Zamboni
,
G.
,
2014
, “
Pulsating Flow Performance of a Turbocharger Compressor for Automotive Application
,”
Int. J. Heat Fluid Flow
,
45
, pp.
158
165
.
2.
Bontempo
,
R.
,
Cardone
,
M.
,
Manna
,
M.
, and
Vorraro
,
G.
,
2015
, “
Steady and Unsteady Experimental Analysis of a Turbocharger for Automotive Applications
,”
Energy Convers. Manage.
,
99
, pp.
72
80
.
3.
Zhu
,
S.
,
Deng
,
K.
, and
Liu
,
S.
,
2015
, “
Modeling and Extrapolating Mass Flow Characteristics of a Radial Turbocharger Turbine
,”
Energy
,
87
, pp.
628
637
.
4.
Liu
,
Z.
, and
Copeland
,
C.
,
2018
, “
New Method for Mapping Radial Turbines Exposed to Pulsating Flows
,”
Energy
,
162
, pp.
1205
1222
.
5.
Serrano
,
J. R.
,
Navarro
,
R.
,
García-Cuevas
,
L. M.
, and
Inhestern
,
L. B.
,
2019
, “
Contribution to Tip Leakage Loss Modeling in Radial Turbines Based on 3D Flow Analysis and 1D Characterization
,”
Int. J. Heat Fluid Flow
,
78
, p.
108423
.
6.
Yang
,
M.
,
Deng
,
K.
,
Martines-Botas
,
R.
, and
Zhuge
,
W.
,
2016
, “
An Investigation on Unsteadiness of a Mixed-Flow Turbine Under Pulsating Conditions
,”
Energy Convers. Manage.
,
110
, pp.
51
58
.
7.
Rajoo
,
S.
,
Romagnoli
,
A.
, and
Martinez-Botas
,
R. F.
,
2012
, “
Unsteady Performance Analysis of a Twin-Entry Variable Geometry Turbocharger Turbine
,”
Energy
,
38
(
1
), pp.
176
189
.
8.
Galindo
,
J.
,
Tiseira
,
A.
,
Fajardo
,
P.
, and
García-Cuevas
,
L. M.
,
2014
, “
Development and Validation of a Radial Variable Geometry Turbine Model for Transient Pulsating Flow Applications
,”
Energy Convers. Manage.
,
85
, pp.
190
203
.
9.
Romagnoli
,
A.
,
Martinez-Botas
,
R. F.
, and
Rajoo
,
S.
,
2011
, “
Steady State Performance Evaluation of Variable Geometry Twin-Entry Turbine
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
477
489
.
10.
Costall
,
A.
, and
Martinez-Botas
,
R. F.
,
2007
, “
Fundamental Characterization of Turbocharger Turbine Unsteady Flow Behavior
,”
ASME Turbo Expo, Power for Land, Sea and Air, GT2007-28317
,
Montreal, Canada
,
May 14–17
, pp.
1827
1839
.
11.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Martinez-Botas
,
R. F.
, and
Costall
,
A. W.
,
2012
, “
Engine Turbocharger Performance Prediction: One-Dimensional Modeling of a Twin Entry Turbine
,”
Energy Convers. Manage.
,
57
, pp.
68
78
.
12.
De Bellis
,
V.
,
Marelli
,
S.
,
Bozza
,
F.
, and
Capobianco
,
M.
,
2014
, “
1D Simulation and Experimental Analysis of a Turbocharger Turbine for Automotive Engines Under Steady and Unsteady Flow Conditions
,”
Energy Procedia
,
45
, pp.
909
918
.
13.
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
Steady and Pulsating Flow Efficiency of a Waste-Gated Turbocharger Radial Flow Turbine for Automotive Application
,”
Energy
,
36
(
1
), pp.
459
465
.
14.
Piscaglia
,
F.
,
Onorati
,
A.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2018
, “
A Detailed One-Dimensional Model to Predict the Unsteady Behavior of Turbocharger Turbines for Internal Combustion Engine Applications
,”
Int. J. Engine Res.
,
20
(
3
), p.
1468087417752525
.
15.
Padzillah
,
M. H.
,
Rajoo
,
S.
,
Yang
,
M.
, and
Martinez-Botas
,
R. F.
,
2015
, “
Influence of Pulsating Flow Frequencies Towards the Flow Angle Distributions of an Automotive Turbocharger Mixed-Flow Turbine
,”
Energy Convers. Manage.
,
98
, pp.
449
462
.
16.
Chen
,
H.
,
Hakeem
,
I.
, and
Martinez-Botas
,
R. F.
,
1996
, “
Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
210
(
5
), pp.
397
408
.
17.
Ding
,
Z.
,
Zhuge
,
W.
,
Zhang
,
Y.
,
Chen
,
H.
,
Martinez-Botas
,
R.
, and
Yang
,
M.
,
2017
, “
A One-Dimensional Unsteady Performance Model for Turbocharger Turbines
,”
Energy
,
132
, pp.
341
355
.
18.
Galindo
,
J.
,
Fajardo
,
P.
,
Navarro
,
R.
, and
García-Cuevas
,
L. M.
,
2013
, “
Characterization of a Radial Turbocharger Turbine in Pulsating Flow by Means of CFD and Its Application to Engine Modeling
,”
Appl. Energy
,
103
, pp.
116
127
.
19.
Hamel
,
M.
,
Abidat
,
M.
, and
Litim
,
S. A.
,
2012
, “
Investigation of the Mixed Flow Turbine Performance Under Inlet Pulsating Flow Conditions
,”
C. R. Mec.
,
340
(
3
), pp.
165
176
.
20.
Galindo
,
J.
,
Serrano
,
J. R.
,
Garcia-Cuevas
,
l. M.
, and
Medina
,
N.
,
2021
, “
Using a CFD Analysis of Flow Capacity in a Twin-Entry Turbine to Develop a Simplified Physics-Based Model
,”
Aerosp. Sci. Technol.
,
112
, p.
106623
.
21.
Vijayakumar
,
R.
,
Akehurst
,
S.
,
Liu
,
Z.
,
Reyes-Belmonte
,
M. A.
,
Brace
,
C. J.
,
Liu
,
D.
, and
Copeland
,
C.
,
2019
, “
Design and Testing a Bespoke Cylinder Head Pulsating Flow Generator for a Turbocharger Gas Stand
,”
Energy
,
189
, p.
116291
.
22.
Roclawski
,
H.
,
Gugau
,
M.
,
Langecker
,
F.
, and
Bohle
,
M.
,
2014
, “
Influence of Degree of Reaction on Turbine Performance for Pulsating Flow Conditions
,”
ASME Turbo Expo: Turbine Technical Conference and Exposition
,
Dusseldrof, Germany
,
June 16–20
, pp.
1
13
.
23.
Roclawski
,
H.
,
Bohle
,
M.
, and
Gugau
,
M.
,
2012
, “
Multidisciplinary Design Optimisation of Mixed Flow Turbine Wheel
,”
ASME Turbo Expo, GT2012-68233
,
Copenhagen, Denmark
.
24.
Hellström
,
F.
,
Renberg
,
U.
,
Westin
,
F.
, and
Fuchs
,
L.
,
2010
, Predictions of the Performance of a Radial Turbine With Different Modeling Approaches: Comparison of the Results from 1-D and 3-D CFD. SAE Technical Paper Series, pp.
1
14
.
25.
Tabatabaei
,
H. R.
,
Boroomand
,
M.
, and
Taeibi-Rahi
,
M.
,
2012
, “
Pulsating Flow Analysis in a Small Turbocharger Turbine
,”
Int. J. Sci. Eng. Investig.
,
1
, pp.
85
91
.
26.
Lee
,
S. P.
,
Rezk
,
A.
,
Jupp
,
M.
, and
Nickson
,
K.
,
2018
, “
The Influence of Pulse Shape on the Performance of a Mixed Flow Turbine for Turbocharger Applications
,”
Int. J. Mech. Eng. Robot. Res.
,
7
(
2
), pp.
136
142
.
27.
Galindo
,
J.
,
Hoyas
,
S.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2013
, “
Set-up Analysis and Optimization of CFD Simulations for Radial Turbines
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
4
), pp.
441
460
.
28.
Lee
,
S.
,
Barrans
,
S.
,
Jupp
,
M.
, and
Nickson
,
A. A.
,
2017
, “
The Impact of Volute Aspect Ratio on the Performance of a Mixed Flow Turbine
,”
Aerospace
,
4
(
4
), pp.
2226
4310
.
29.
Mahfoudh
,
C.
, and
Adel
,
G.
,
2015
, “
Analyses of Steady and Unsteady Flows in a Turbocharger’s Radial Turbine
,”
Proc. Inst. Mech. Eng., Part E
,
229
(
2
), pp.
130
145
.
30.
Otoguro
,
Y.
,
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Nagaoka
,
K.
, and
Mei
,
S.
,
2019
, “
Turbocharger Turbine and Exhaust Manifold Flow Computation With the Space-Time Variational Method and Isogeometric Analysis
,”
Comput. Fluids
,
179
, pp.
764
776
.
31.
Xin
,
Q.
,
2011
,
Diesel Engine System Design
,
Woodhead
,
Navistar Inc., Murray, KY
.
32.
SAE, Surface Vehicle Recommended Practice, 2014
, in Turbocharger Gas Stand Code, SAE Publications, 11.
33.
Turbocharger Turbine Map
, 2013, Borgwarner Turbo Systems, I, Arden, NC.
34.
Burke
,
R. D.
,
Vagg
,
C. R. M.
,
Chalet
,
D.
, and
Chesse
,
P.
,
2015
, “
Heat Transfer in Turbocharger Turbines Under Steady, Pulsating and Transient Conditions
,”
Int. J. Heat Fluid Flow
,
52
, pp.
185
197
.
35.
Zimmermann
,
R.
,
Hakansson
,
S.
,
Baar
,
R.
, and
Enghardt
,
L.
,
2015
, “
Investigation on Pulsating Turbine Flow Radial Turbines
,”
Proceedings of 24th Aachen Colloquium Automobile and Engine Technology
,
Oct. 5–7
.
36.
Lee
,
S. P.
,
Jupp
,
M. L.
,
Barrans
,
S. M.
, and
Nickson
,
A. K.
,
2019
, “
Analysis of Leading Edge Flow Characteristics in a Mixed Flow Turbine Under Pulsating Flows
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
1
), pp.
78
95
.
37.
Yang
,
M.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Yokoyama
,
T.
, and
Ibaraki
,
S.
,
2015
, “
An Investigation of Volute Cross-Sectional Shape on Turbocharger Turbine Under Pulsating Conditions in Internal Combustion Engine
,”
Energy Convers. Manage.
,
105
, pp.
167
177
.
38.
Padzillah
,
M. H.
,
Rajoo
,
S.
, and
Martinez-Botas
,
R. F.
,
2014
, “
Influence of Speed and Frequency Towards the Automotive Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
Energy Convers. Manage.
,
80
, pp.
416
428
.
You do not currently have access to this content.