Abstract

The global climate change challenge and the international commitment to reduce carbon emission can be addressed by improving energy conversion efficiency and adopting efficient waste heat recovery technologies. Supercritical carbon dioxide (s-CO2) cycles that offer a compact footprint and higher cycle efficiency are investigated in this study to utilize the waste heat of the exhaust gas from a marine diesel engine (Wärtsilä-18V50DF, 17.55 MW). Steady-state models of basic, recuperated, and reheated s-CO2 Brayton cycles are developed and optimized for network and thermal efficiency in Aspen Plus to simulate and compare their performances. Results show that the reheated cycle performs marginally better than the recuperated cycle accounting for the highest optimized network and thermal efficiency. For the reheated and recuperated cycle, the optimized network ranges 648–2860 kW and 628–2852 kW, respectively, while optimized thermal efficiency ranges are 15.2–36.3% and 14.8–35.6%, respectively. Besides, an energy efficiency improvement of 6.3% is achievable when the engine is integrated with an s-CO2 waste heat recovery system which is operated by flue gas with a temperature of 373 °C and mass flow rate of 28.2 kg/s, compared to the engine without a heat recovery system.

References

1.
Lenssen
,
N. J. L.
,
Schmidt
,
G. A.
,
Hansen
,
J. E.
,
Menne
,
M. J.
,
Persin
,
A.
,
Ruedy
,
R.
, and
Zyss
,
D.
,
2019
, “
Improvements in the GISTEMP Uncertainty Model
,”
J. Geophysical Res.: Atmospheres.
,
124
(
12
), pp.
6307
6326
. 10.1029/2018JD029522
2.
United Nations Framework Convention on Climate Change
,
2020
,
The Paris Agreement
.
3.
Forman
,
C.
,
Muritala
,
I. K.
,
Pardemann
,
R.
, and
Meyer
,
B.
,
2016
, “
Estimating the Global Waste Heat Potential
,”
Renewable Sustainable Energy Rev. Elsevier
,
57
, pp.
1568
1579
. 10.1016/j.rser.2015.12.192
4.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
. 10.1115/1.4031783
5.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
,
2012
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
. 10.1115/1.4007360
6.
Eichhammer
,
W.
,
Fleiter
,
T.
,
Schlomann
,
B.
,
Faberi
,
S.
,
Fioretto
,
M.
,
Piccioni
,
N.
,
Lechtenböhmer
,
S.
,
Schüring
,
A.
, and
Resch
,
G.
,
2009
,
Study on the Energy Savings Potentials in EU Member States
,
Candidate Countries and EEA Countries
,
Grenoble
.
7.
Smith
,
T. W. P.
,
Jalkanen
,
J. P.
,
Anderson
,
B. A.
,
Corbett
,
J. J.
,
Faber
,
J.
,
Hanayama
,
S.
,
O’Keeffe
,
E.
,
Parker
,
S.
,
Johansson
,
L.
and
Aldous
,
L.
,
2015
,
Third IMO Greenhouse Gas Study 2014
,
Third IMO GHG Study 2014
,
London
.
8.
UK Energy Research Centre
,
2020
,
Efficient New Ships Won’t be Enough to Meet the Paris Agreement’s Goals
.
9.
Hou
,
S.
,
Zhang
,
W.
,
Zeng
,
Z.
, and
Ji
,
J.
,
2015
, “
Supercritical CO2 Cycle System Optimization of Marine Diesel Engine Waste Heat Recovery
,”
International Conference on Advances in Energy, Environment and Chemical Engineering. Atlantis Press
,
Changsha, China
,
Sept. 26–27
,
Atlantis Press
, pp.
178
183
.
10.
Zhu
,
S.
,
Zhang
,
K.
, and
Deng
,
K.
,
March 2020
, “
A Review of Waste Heat Recovery From the Marine Engine With Highly Efficient Bottoming Power Cycles
,”
Renewable Sustainable Energy Rev.
,
120
, p.
109611
. 10.1016/j.rser.2019.109611
11.
MAN Diesel&Turbo
,
2014
,
How to Influence CO2
.
12.
Chowdhury
,
J. I.
,
Nguyen
,
B. K.
, and
Thornhill
,
D.
,
2017
, “
Investigation of Waste Heat Recovery System at Supercritical Conditions With Vehicle Drive Cycles
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
923
936
. 10.1007/s12206-017-0145-x
13.
Chowdhury
,
J. I.
,
2017
,
Modelling and Control of Waste Heat Recovery System
,
Queens University Belfast
,
Belfast
.
14.
Chowdhury
,
J. I.
,
Nguyen
,
B. K.
,
Thornhill
,
D.
,
Hu
,
Y.
,
Soulatiantork
,
P.
,
Balta-Ozkan
,
N.
, and
Varga
,
L.
,
2018
, “
Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems
,”
Energies.
,
11
(
4
), p.
901
. 10.3390/en11040901
15.
Ajimotokan
,
H. A.
, and
Sher
,
I.
,
2015
, “
Thermodynamic Performance Simulation and Design Optimization of Trilateral-Cycle Engines for Waste Heat Recovery-to-Power Generation
,”
Appl. Energy
,
154
, pp.
26
34
. 10.1016/j.apenergy.2015.04.095
16.
Dong
,
T. M. H.
, and
Nguyen
,
X. P.
,
2019
, “
Exhaust Gas Recovery From Marine Diesel Engine in Order to Reduce the Toxic Emission and Save Energy: A Mini Review
,”
J. Mech. Eng. Res. Developments.
,
42
(
5
), pp.
143
147
. 10.26480/jmerd.05.2019.143.147
17.
Brighenti
,
G. D.
,
2014
,
Performance and Assessment of s-CO2 Bottoming Cycles for GT-Based Power Plants for Commercial Marine Applications
,
Cranfield University
,
Bedford
.
18.
Fang
,
L.
,
Li
,
Y.
,
Yang
,
X.
, and
Yang
,
Z.
,
2020
, “
Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031301
. 10.1115/1.4045083
19.
Carlson
,
M.
, and
Alvarez
,
F.
,
2021
, “
Design of A 1 Mwth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090905
. 10.1115/1.4049289
20.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci. Springer International Publishing
,
2
(
4
), pp.
1
13
. 10.1007/s42452-020-2116-6
21.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
. 10.1115/1.4040581
22.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
. 10.1115/1.4039873
23.
Ogidiama
,
O. V.
,
Abu Zahra
,
M.
, and
Shamim
,
T.
,
2018
, “
Techno-Economic Analysis of a Carbon Capture Chemical Looping Combustion Power Plant
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112004
. 10.1115/1.4040193
24.
Aspen Plus V11
,
2019
,
PENG-ROB. Aspen Technology
.
25.
Yang
,
M. H.
,
2016
, “
Optimizations of the Waste Heat Recovery System for a Large Marine Diesel Engine Based on Transcritical Rankine Cycle
,”
Energy
,
113
, pp.
1109
1124
. 10.1016/j.energy.2016.07.152
26.
Cha
,
J. E.
,
Ahn
,
Y.
,
Seo
,
H.
, and
Chung
,
H. J.
,
2017
, “
Development of Supercritical CO2 Power System for Waste Heat Application
,”
Transactions of the Korean Nuclear Society Autumn Meeting
,
Gyeongju, South Korea
,
Oct. 25–27
, pp.
1CD-ROM
.
27.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2008
,
Thermodynamics: An Engineering Approach
, 7th ed,
McGraw-Hill
,
New York
.
28.
Chowdhury
,
J. I.
,
Asfand
,
F.
,
Hu
,
Y.
,
Balta-ozkan
,
N.
,
Varga
,
L.
, and
Patchigolla
,
K.
,
2019
, “
Waste Heat Recovery Potential From Industrial Bakery Ovens Using Thermodynamic Power Cycles
,”
Proceedings of ECOS 2019—the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
Wroclaw, Poland: ECOS
,
June 23–28
, pp.
2435
2441
.
29.
Palchak
,
D.
,
Suryanarayanan
,
S.
, and
Zimmerle
,
D.
,
2013
, “
An Artificial Neural Network in Short-Term Electrical Load Forecasting of a University Campus: A Case Study
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032001
. 10.1115/1.4023741
30.
Márquez-Nolasco
,
A.
,
Conde-Gutiérrez
,
R. A.
,
Hernández
,
J. A.
,
Huicochea
,
A.
,
Siqueiros
,
J.
, and
Pérez
,
O. R.
,
2018
, “
Optimization and Estimation of the Thermal Energy of an Absorber With Graphite Disks by Using Direct and Inverse Neural Network
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020906
. 10.1115/1.4036544
31.
Kang
,
P. S.
,
Lim
,
J. S.
, and
Huh
,
C.
,
2021
, “
Temperature Dependence of the Shear-Thinning Behavior of Partially Hydrolyzed Polyacrylamide Solution for Enhanced Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
063002
. 10.1115/1.4048592
32.
Wärtsilä
.
Wärtsilä-18V50DF.
,
2020
, https://www.wartsila.com/marine/build/engines-and-generating-sets/dual-fuel-engines/wartsila-50df, Accessed October 14, 2020.
33.
Sung
,
T.
, and
Kim
,
K. C.
,
2016
, “
Thermodynamic Analysis of a Novel Dual-Loop Organic Rankine Cycle for Engine Waste Heat and LNG Cold
,”
Appl. Thermal Eng.
,
100
, pp.
1031
1041
. 10.1016/j.applthermaleng.2016.02.102
34.
Ciric
,
A. R.
, and
Floudas
,
C. A.
,
1991
, “
Heat Exchanger Network Synthesis Without Decomposition
,”
Comput. Chem. Eng.
,
15
(
6
), pp.
385
396
. 10.1016/0098-1354(91)87017-4
35.
Chowdhury
,
J. I.
,
Hu
,
Y.
,
Haltas
,
I.
,
Balta-Ozkan
,
N.
,
Matthew
,
G. J.
, and
Varga
,
L.
,
2018
, “
Reducing Industrial Energy Demand in the UK: A Review of Energy Efficiency Technologies and Energy Saving Potential in Selected Sectors
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
1153
1178
. 10.1016/j.rser.2018.06.040
36.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam
,”
Power-Gen India & Central Asia 2012
,
New Delhi, India
,
Apr. 19–21
.
37.
Bontempo
,
R.
, and
Manna
,
M.
,
2019
, “
Work and Efficiency Optimization of Advanced Gas Turbine Cycles
,”
Energy Conversion Management
,
195
, pp.
1255
1279
. 10.1016/j.enconman.2019.03.087
You do not currently have access to this content.