Abstract

Exergy analysis of the reciprocating internal combustion (IC) engines is studied by estimating various input and output energy transfer parameters concerning a dead state reference. Exergy terms such as fuel input, work output, cooling, and exhaust gas are measured and are set into the exergy balance equation to determine the amount of loss or destruction. Exergy destructions are found in many forms such as combustion (entropy generation), cylinder wall, friction, mixing, blow-by, and others. These exergy terms have been estimated by considering various factors such as engine type, fuel type, environmental condition, and others. In this article, the different methods employed in estimating these exergy terms have been reviewed. It attempts to make a compendium of these evaluation methods and segregates them under individual exergy terms with necessary descriptions. The fuel input measurement is mostly based on Gibb's free energy and the lower heating value, whereas its higher heating value is used during the fuel exergy calculation on a molar basis. The work output of the engines is estimated either from the crankshaft or by analyzing the cylinder pressure and volume. The exergy transfer with cooling medium and exhaust gas depends on the temperature of the gas. The maximum achievable engine performance is quantified by estimating the exergy efficiency. This piece of study will not only provide plenty of information on exergy evaluation methods of IC engines but will also allow future researchers to adopt the appropriate one.

References

1.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
.
2.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
3.
Tang
,
M.
,
Pei
,
Y.
,
Guo
,
H.
,
Zhang
,
Y.
,
Torelli
,
R.
,
Probst
,
D.
,
Fütterer
,
C.
, and
Traver
,
M.
,
2021
, “
Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062309
.
4.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2014
,
Fundamentals of Engineering Thermodynamics
, 8th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
5.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2014
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill Education
,
New York
.
6.
Douvartzides
,
S.
,
Karmalis
,
I.
, and
Ntinas
,
N.
,
2020
, “
Thermodynamic Cycle Analysis of an Automotive Internal Combustion Engine With the Characteristics of the Commercial BMW N54 Spark-Ignition Model
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102301
.
7.
Dunbar
,
W. R.
,
Lior
,
N.
, and
Gaggioli
,
R. A.
,
1992
, “
The Component Equations of Energy and Exergy
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), pp.
75
83
.
8.
Tsatsaronis
,
G.
,
1993
, “
Thermoeconomic Analysis and Optimization of Energy Systems
,”
Prog. Energy Combust. Sci.
,
19
(
3
), pp.
227
257
.
9.
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1997
, “
Exergy-Aided Cost Minimization
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1535
1542
.
10.
Ekici
,
S.
,
2020
, “
Thermodynamic Mapping of A321-200 in Terms of Performance Parameters, Sustainability Indicators and Thermo-ecological Performance at Various Flight Phases
,”
Energy
,
202
, p.
117692
.
11.
Ekici
,
S.
,
2020
, “
Investigating Routes Performance of Flight Profile Generated Based on the Off-Design Point: Elaboration of Commercial Aircraft-Engine Pairing
,”
Energy
,
193
, p.
116804
.
12.
Balli
,
O.
,
Aras
,
H.
,
Aras
,
N.
, and
Hepbasli
,
A.
,
2008
, “
Exergetic and Exergoeconomic Analysis of an Aircraft Jet Engine (AJE)
,”
Int. J. Exergy
,
5
(
5/6
), pp.
567
581
.
13.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.
14.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
,
Butterworths
,
London, UK
.
15.
Bader
,
W. T.
,
2000
, “
Exergy Analysis for Industrial Energy Assessment
,” Graduate theses and dissertations.
16.
AL-Najem
,
N. M.
, and
Diab
,
J. M.
,
1992
, “
Energy-Exergy Analysis of a Diesel Engine
,”
Heat Recovery Syst. CHP
,
12
(
6
), pp.
525
529
.
17.
Caton
,
J. A.
,
2000
, “
A Review of Investigations Using the Second Law of Thermodynamics to Study Internal-Combustion Engines
” SAE Paper No. 2000–01–1081.
18.
Adebiyi
,
G. A.
,
2006
, “
Limits of Performance for Alternate Fuel Energy to Mechanical Work Conversion Systems
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
229
235
.
19.
Bhatti
,
S. S.
,
Verma
,
S.
, and
Tyagi
,
S. K.
,
2019
, “
Energy and Exergy Based Performance Evaluation of Variable Compression Ratio Spark Ignition Engine Based on Experimental Work
,”
Ther. Sci. Eng. Prog.
,
9
, pp.
332
339
.
20.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2015
, “
Theoretical Performance Limits of a Biogas–Diesel Powered Dual Fuel Diesel Engine for Different Combinations of Compression Ratio and Injection Timing
,”
ASCE J. Energy Eng.
,
142
(
2
), p.
E4015001
.
21.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2016
, “
Estimating the Theoretical Performance Limits of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021801
.
22.
Caliskan
,
H.
,
Tat
,
M. E.
, and
Hepbasli
,
A.
,
2010
, “
A Review on Exergetic Analysis and Assessment of Various Types of Engines
,”
Int. J. Exergy
,
7
(
3
), pp.
287
310
.
23.
Caton
,
J. A.
,
2002
, “
A Cycle Simulation Including the Second Law of Thermodynamics for a Spark-Ignition Engine: Implications of the Use of Multiple-Zones for Combustion
,” SAE Paper No. 2002-01-0007.
24.
Caton
,
J. A.
,
2003
, “
Effects of the Compression Ratio on Nitric Oxide Emissions for a Spark Ignition Engine: Results From a Thermodynamic Cycle Simulation
,”
Int. J. Engine Res.
,
4
(
4
), pp.
249
268
.
25.
Caton
,
J. A.
,
2012
, “
The Thermodynamic Characteristics of High Efficiency, Internal-Combustion Engines
,”
Energy Convers. Manage.
,
58
, pp.
84
93
.
26.
Caton
,
J. A.
,
2016
,
An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines
,
John Wiley & Sons
,
Chichester, UK
.
27.
Caton
,
J. A.
,
2018
, “
The Thermodynamics of Internal Combustion Engines: Examples of Insights
,”
Inventions
,
3
(
2
), p.
33
.
28.
Chaudhary
,
V.
, and
Gakkhar
,
R. P.
,
2021
, “
Exergy Analysis of Small DI Diesel Engine Fueled With Waste Cooking Oil Biodiesel
,”
Energy Sources, Part A
,
43
(
2
), pp.
201
215
.
29.
Dhyani
,
V.
, and
Subramanian
,
K. A.
,
2019
, “
Experimental Based Comparative Exergy Analysis of a Multi-cylinder Spark Ignition Engine Fuelled With Different Gaseous (CNG, HCNG, and Hydrogen) Fuels
,”
Int. J. Hydrogen Energy
,
44
(
36
), pp.
20440
20451
.
30.
Debnath
,
B. K.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2013
, “
Thermodynamic Analysis of a Variable Compression Ratio Diesel Engine Running With Palm Oil Methyl Ester
,”
Energy Convers. Manage.
,
65
, pp.
147
154
.
31.
Debnath
,
B. K.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2014
, “
Theoretical Route Toward the Estimation of Second Law Potential of an Emulsified Palm Biodiesel Run Diesel Engine
,”
ASCE J. Energy Eng.
,
140
(
3
), p.
A4014007
.
32.
Bozza
,
F.
,
Nocera
,
R.
,
Senatore
,
A.
, and
Tuccillo
,
R.
,
1991
, “
Second Law Analysis of Turbocharged Engine Operation
,” SAE Paper No. 910418.
33.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol-Methanol-Gasoline Blends in a Turbocharged Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
34.
Gümüş
,
M.
, and
Atmaca
,
M.
,
2013
, “
Energy and Exergy Analyses Applied to a CI Engine Fueled With Diesel and Natural Gas
,”
Energy Sources, Part A
,
35
(
11
), pp.
1017
1027
.
35.
Hongqing
,
F.
, and
Huijie
,
L.
,
2010
, “
Second-Law Analyses Applied to a Spark Ignition Engine Under Surrogate Fuels for Gasoline
,”
Energy
,
35
(
9
), pp.
3551
3556
.
36.
Hosseinzadeh
,
A.
, and
Saray
,
R. K.
,
2009
, “
An Availability Analysis of Dual-Fuel Engines at Part Loads: Effects of Pilot Fuel Quantity on Availability Terms
,”
Proc. Inst. Mech. Eng. A: J. Power Ener.
,
223
(
8
), pp.
903
912
.
37.
Krishnamoorthi
,
M.
, and
Malayalamurthi
,
R.
,
2018
, “
Availability Analysis, Performance, Combustion and Emission Behavior of Bael Oil-Diesel-Diethyl Ether Blends in a Variable Compression Ratio Diesel Engine
,”
Renewable Energy
,
119
, pp.
235
252
.
38.
Krishnamoorthi
,
M.
,
Sreedhara
,
S.
, and
Duvvuri
,
P. P.
,
2020
, “
Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled With Syngas and Biodiesel/Diesel Blends
,”
Appl. Energy
,
263
, p.
114643
.
39.
Kopac
,
M.
, and
Kokturk
,
L.
,
2005
, “
Determination of Optimum Speed of an Internal Combustion Engine by Exergy Analysis
,”
Int. J. Exergy
,
2
(
1
), pp.
40
54
.
40.
Kul
,
S. B.
, and
Kahraman
,
A.
,
2016
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Biodiesel-Diesel Blends Containing 5% Bioethanol
,”
Entropy
,
18
(
11
), p.
387
.
41.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022201
.
42.
Mahabadipour
,
H.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2019
, “
An Exergy Analysis Methodology for Internal Combustion Engines Using a Multi-zone Simulation of Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
256
, p.
113952
.
43.
Mattson
,
J.
,
Reznicek
,
E.
, and
Depcik
,
C.
,
2015
, “
Second Law Heat Release Modeling of a Compression Ignition Engine Fueled With Blends of Palm Biodiesel
,” Paper No. IMECE2015-51079,
ASME International Mechanical Engineering Congress and Exposition
,
Nov. 13–19
,
Houston, TX
.
44.
Mohebbi
,
M.
,
Reyhanian
,
M.
,
Ghofrani
,
I.
,
Aziz
,
A. A.
, and
Hosseini
,
V.
,
2017
, “
Availability Analysis on Combustion of n-Heptane and Isooctane Blends in a Reactivity Controlled Compression Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
232
(
11
), pp.
1501
1515
.
45.
Nazzal
,
I. T.
, and
Kamil
,
M.
,
2020
, “
Energy and Exergy Analysis of Spark Ignited Engine Fueled With Gasoline-Ethanol-Butanol Blends
,”
AIMS Energy
,
8
(
6
), pp.
1007
1028
.
46.
Ozcan
,
H.
,
2010
, “
Hydrogen Enrichment Effects on the Second Law Analysis of a Lean Burn Natural Gas Engine
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1443
1452
.
47.
Özkan
,
M.
,
2015
, “
A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed With Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure
,”
Entropy
,
17
(
1
), pp.
244
263
.
48.
Paul
,
A.
,
Panua
,
R.
, and
Debroy
,
D.
,
2017
, “
An Experimental Study of Combustion, Performance, Exergy and Emission Characteristics of a CI Engine Fueled by Diesel-Ethanol-Biodiesel Blends
,”
Energy
,
141
, pp.
839
852
.
49.
Rakopoulos
,
C. D.
,
1993
, “
Evaluation of a Spark Ignition Engine Cycle Using First and Second Law Analysis Techniques
,”
Energy Convers. Manage.
,
34
(
12
), pp.
1299
1314
.
50.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
1997
, “
Speed and Load Effects on the Availability Balances and Irreversibilities Production in a Multi-cylinder Turbocharged Diesel Engine
,”
Appl. Therm. Eng.
,
17
(
3
), pp.
299
313
.
51.
Rakopoulos
,
C. D.
, and
Michos
,
C. N.
,
2009
, “
Generation of Combustion Irreversibilities in a Spark Ignition Engine Under Biogas–Hydrogen Mixtures Fueling
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4422
4437
.
52.
Razmara
,
M.
,
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Robinett
R. D.
, III
,
2016
, “
Optimal Exergy-Based Control of Internal Combustion Engines
,”
Appl. Energy
,
183
, pp.
1389
1403
.
53.
Sahoo
,
B. B.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2011
, “
Theoretical Performance Limits of a Syngas-Diesel Fueled Compression Ignition Engine From Second Law Analysis
,”
Energy
,
36
(
2
), pp.
760
769
.
54.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2012
, “
Diagnosing the Effects of Pilot Fuel Quality on Exergy Terms in a Biogas Run Dual Fuel Diesel Engine
,”
Int. J. Exergy
,
10
(
1
), pp.
77
93
.
55.
Salek
,
F.
,
Babaie
,
M.
,
Ghodsi
,
A.
,
Hosseini
,
S. V.
, and
Zare
,
A.
,
2020
, “
Energy and Exergy Analysis of a Novel Turbo-compounding System for Supercharging and Mild Hybridization of a Gasoline Engine
,”
J. Therm. Anal. Calorim
.
56.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2020
, “
Energetic and Exergetic Analyses of a Dual-Fuel Diesel Engine Run on Preheated Intake Biogas-Air Mixture and Oxygenated Pilot Fuels
,”
ASCE J. Energy Eng.
,
146
(
5
), p.
04020046
.
57.
Saxena
,
S.
,
Shah
,
N.
,
Bedoya
,
I.
, and
Phadke
,
A.
,
2014
, “
Understanding Optimal Engine Operating Strategies for Gasoline-Fueled HCCI Engines Using Crank-Angle Resolved Exergy Analysis
,”
Appl. Energy
,
114
, pp.
155
163
.
58.
Sayin
,
C.
,
Hosoz
,
M.
,
Canakc
,
M.
, and
Kilicaslan
,
I.
,
2006
, “
Energy and Exergy Analyses of a Gasoline Engine
,”
Int. J. Energy Res.
,
31
(
3
), pp.
259
273
.
59.
Sekmen
,
P.
, and
Yılbaşı
,
Z.
,
2011
, “
Application of Energy and Exergy Analyses to a CI Engine Using Biodiesel Fuel
,”
Math. Comput. Appl.
,
16
(
4
), pp.
797
808
.
60.
Sezer
,
İ
, and
Bilgin
,
A.
,
2008
, “
Exergy Analysis of SI Engines
,”
Int. J. Exergy
,
5
(
2
), pp.
204
217
.
61.
Sezer
,
I.
, and
Bilgin
,
A.
,
2012
, “
Exergetic Evaluation of Speed and Load Effects in Spark Ignition Engines
,”
Oil Gas Sci. Technol.
,
67
(
4
), pp.
647
660
.
62.
Som
,
S. K.
, and
Datta
,
A.
,
2008
, “
Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes
,”
Prog. Energy Combust. Sci.
,
34
(
3
), pp.
351
376
.
63.
Song
,
J.
, and
Song
,
H. H.
,
2020
, “
Analytical Approach to the Exergy Destruction and the Simple Expansion Work Potential in the Constant Internal Energy and Volume Combustion Process
,”
Energies
,
13
(
2
), p.
395
.
64.
Taha
,
Y. F.
,
Khalaf
,
H. J.
, and
Hamada
,
K. I.
,
2020
, “
An Assessment of the Availability and Efficiency of a Gasoline Fueled Spark Ignition Internal Combustion Engine
,”
Energy Sources, Part A
, pp.
1
22
.
65.
Van Gerpen
,
J. H.
, and
Shapiro
,
H. N.
,
1990
, “
Second-Law Analysis of Diesel Engine Combustion
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
129
137
.
66.
Verma
,
S.
,
Das
,
L. M.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2018
, “
An Experimental Investigation of Exergetic Performance and Emission Characteristics of Hydrogen Supplemented Biogas-Diesel Dual Fuel Engine
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
2452
2468
.
67.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092301
.
68.
Wang
,
X.
,
Sun
,
B.
, and
Luo
,
Q.
,
2019
, “
Energy and Exergy Analysis of a Turbocharged Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
44
(
2019
), pp.
5551
5563
.
69.
Yildiz
,
I.
,
Caliskan
,
H.
, and
Mori
,
K.
,
2019
, “
Exergy Analysis and Nanoparticle Assessment of Cooking Oil Biodiesel and Standard Diesel Fueled Internal Combustion Engine
,”
Energy Environ.
,
31
(
8
), pp.
1303
1317
.
70.
Flynn
,
P. F.
,
Hoag
,
K. L.
,
Kamel
,
M. M.
, and
Primus
,
R. J.
,
1984
, “
A New Perspective on Diesel Engine Evaluation Based on Second Law Analysis
,” SAE Paper no. 840032.
71.
Szargut
,
J.
, and
Styrylska
,
T.
,
1964
, “
AngenäRhte Bestimmung der Exergie von Brennstoffen
,”
Brennst-Wärme-Kraft
,
16
, pp.
589
596
.
72.
Tat
,
M. E.
,
2011
, “
Cetane Number Effect on the Energetic and Exergetic Efficiency of a Diesel Engine Fuelled With Biodiesel
,”
Fuel Process. Technol.
,
92
(
7
), pp.
1311
1321
.
73.
Rant
,
Z.
,
1961
, “
Zur Bestimmung der Spezifischen Exergie von Bnennstoffen
,”
Allgemeine Warmetech
,
10
(
9
), p.
S172
.
74.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
), pp.
249
253
.
75.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
NY
.
76.
Dimitrova
,
Z.
, and
Marechal
,
F.
,
2017
, “
Energy Integration on Multi-periods for Vehicle Thermal Powertrains
,”
Can. J. Chem. Eng.
,
95
, pp.
235
264
.
77.
Ntziachristos
,
L.
,
Samaras
,
Z.
,
Zervas
,
E.
, and
Dorlhene
,
P.
,
2005
, “
Effects of a Catalysed and an Additized Partied Filter on the Emissions of a Diesel Passenger Car Operating on Low Sulphur Fuels
,”
Atmos. Environ.
,
39
(
27
), pp.
4925
4936
.
78.
Alkidas
,
A. C.
,
1988
, “
The Application of Availability and Energy Balances to a Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
110
(
3
), pp.
462
469
.
79.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed.,
American Chemical Society
,
Washington, DC
.
80.
Woschni
,
G.
,
1967
, “
A Universally Acceptable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Technical Paper 670931.
81.
Rashidi
,
M. M.
,
Hajipour
,
A.
,
Mousapour
,
A.
,
Ali
,
M.
,
Xie
,
G.
, and
Freidoonimehr
,
N.
,
2014
, “
First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle With Internal Irreversibility: Variable Specific Heats, Heat Loss, and Friction Considerations
,”
Adv. Mech. Eng.
,
6
, p.
359872
.
82.
Gungor
,
A.
,
Erbay
,
Z.
, and
Hepbasli
,
A.
,
2011
, “
Exergetic Analysis and Evaluation of a New Application of Gas Engine Heat Pumps (GEHPs) for Food Drying Processes
,”
Appl. Energy
,
88
(
3
), pp.
882
891
.
You do not currently have access to this content.