Abstract

Lean and dilute gasoline compression ignition (GCI) operation in spark ignition (SI) engines are an attractive strategy to attain high fuel efficiency and low NOx levels. However, this combustion mode is often limited to low-load engine conditions due to the challenges associated with autoignition controllability. In order to overcome this constrain, multi-mode (MM) operating strategies, consisting of advanced compression ignition (ACI) at low load and conventional SI at high load, have been proposed. In this three-dimensional computational fluid dynamics study, the concept of multi-mode combustion using two RON98 gasoline fuel blends (Co-Optima Alkylate and E30) in a gasoline direct injection (GDI) engine were explored. To this end, a new reduced mechanism for simulating the kinetics of E30 fuel blend is introduced in this study. To cover the varying engine load demands for multi-mode engines, primary combustion dynamics observed in ACI and SI combustion modes was characterized and validated against experimental measurements. In order to implement part-load conditions, a strategy of mode transition between SI and ACI combustion (i.e., mixed-mode combustion) was then explored numerically by creating a virtual test condition. The results obtained from the mixed-mode simulations highlight an important feature that deflagrative flame propagation regime coexists with ignition-assisted end-gas autoignition. This study also identifies a role of turbulent flow property adjacent to premixed flame front in characterizing the mixed-mode combustion. The employed hybrid combustion model was verified to perform simulations aiming at suitable range of multi-mode engine operations.

References

1.
Ciatti
,
S.
,
Johnson
,
M.
,
Adhikary
,
B.
,
Reitz
,
R.
, and
Knock
,
A.
,
2013
, “
Efficiency and Emissions Performance of Multizone Stratified Compression Ignition Using Different Octane Fuels
,”
SAE Technical Paper No. 2013-01-0263
.
2.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Eng. Res.
,
12
(
3
), pp.
194
298
.
3.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
4.
Ciatti
,
S.
, and
Subramanian
,
S. N.
,
2011
, “
An Experimental Investigations of Low Octane Gasoline in Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092802
.
5.
Kolodziej
,
C. P.
,
Ciatti
,
S.
,
Vuilleumier
,
D.
,
Adhikary
,
B. D.
, and
Reitz
,
R.
,
2014
, “
Extension of the Lower Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure
,”
SAE Technical Paper No. 2014-01-1302
.
6.
Kulzer
,
A.
,
Hathout
,
J.-P.
,
Sauer
,
C.
,
Karrelmeyer
,
R.
,
Fischer
,
W.
, and
Christ
,
A.
,
2007
, “
Multi-Mode Combustion Strategies With CAI for a GDI Engine
,”
SAE Technical Paper No. 2007-01-0214
.
7.
Lavoie
,
G.
,
Martz
,
J.
,
Wooldridge
,
M.
, and
Assanis
,
D.
,
2010
, “
A Multi-Mode Combustion Diagram for Spark Assisted Compression Ignition
,”
Combust. Flame
,
157
(
6
), pp.
1106
1110
.
8.
Nüesch
,
S.
,
Stefanopoulou
,
A. G.
,
Jiang
,
L.
, and
Sterrniak
,
J.
,
2015
, “
Fuel Economy of a Multimode Combustion Engine With Three-Way Catalytic Converter
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051007
.
9.
Zigler
,
B.
,
Keros
,
P.
,
Helleberg
,
K.
,
Fatouraie
,
M.
,
Assanis
,
D.
, and
Wooldridge
,
M.
,
2011
, “
An Experimental Investigation of the Sensitivity of the Ignition and Combustion Properties of a Single-Cylinder Research Engine to Spark-Assisted HCCI
,”
Int. J. Engine Res.
,
12
(
4
), pp.
353
375
.
10.
Sjöberg
,
M.
, and
Zeng
,
W.
,
2016
, “
Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion
,”
SAE Int. J. Engines
,
9
(
2
), pp.
750
767
.
11.
Hu
,
Z.
,
Zhang
,
J.
,
Sjöberg
,
M.
, and
Zeng
,
W.
,
2019
, “
The Use of Partial Fuel Stratification to Enable Stable Ultra-Lean Deflagration-Based Spark-Ignition Engine Operation With Controlled End-Gas Autoignition of Gasoline and E85
,”
Int. J. Engine Res.
,
21
(
9
), pp.
1
18
.
12.
Sjöberg
,
M.
, and
He
,
X.
,
2017
, “
Combined Effects of Intake Flow and Spark-Plug Location on Flame Development, Combustion Stability and End-Gas Autoignition for Lean Spark-Ignition Engine Operation Using E30 Fuel
,”
Int. J. Engine Res.
,
19
(
1
), pp.
86
95
.
13.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
.
14.
Middleton
,
R. J.
,
Olesky
,
L. K.
,
Lavoie
,
G. A.
,
Wooldridge
,
M. S.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Spark Timing and Negative Valve Overlap on Spark Assisted Compression Ignition Combustion Heat Release Rate
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3117
3124
.
15.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
16.
Pal
,
P.
,
Kolodziej
,
C. P.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Gomez-Soriano
,
J.
,
Wu
,
Y.
,
Lu
,
T.
, and
See
,
Y. C.
,
2018
, “
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
,”
SAE Int. J. Engines
,
11
(
6
), pp.
1069
1082
.
17.
Kim
,
S.
,
Kim
,
J.
,
Shah
,
A.
,
Pal
,
P.
,
Scarcelli
,
R.
,
Rockstroh
,
T.
,
Som
,
S.
,
Wu
,
Y.
, and
Lu
,
T.
,
2019
, “
Numerical Study of Advanced Compression Ignition and Combustion in a Gasoline Direct Injection Engine
,”
Proceedings of the ASME-ICEF 2019
,
Chicago IL
,
Oct. 20–23
.
18.
Shah
,
A.
,
Kang
,
D.
,
Goldsborough
,
S.
, and
Rockstroh
,
T.
,
2019
, “
Utilizing Static Autoignition Measurements to Estimate Intake Air Condition Requirements for Compression Ignition in a Multi-Mode Engine—Engine and RCM Experimental Study
,” SAE Technical Paper No. 2019-01-0957.
19.
Kolodziez
,
C. P.
,
Oamminger
,
M.
,
Sevik
,
J.
,
Wallner
,
T.
,
Wagnon
,
S. W.
, and
Pitz
,
W. J.
,
2017
, “
Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
82
94
.
20.
Wallner
,
T.
,
Sevik
,
J.
,
Scarcelli
,
R.
,
Kaul
,
B.
, and
Wagner
,
R.
,
2015
, “
Effects of Ignition and Injection Perturbation Under Lean and Dilute GDI Engine Operation
,”
SAE Technical Paper No. 2015-01-1871
.
21.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2018
,
CONVERGE Manual
,
Convergent Science
.
22.
Babajimopoulos
,
A.
,
Assanis
,
D.
,
Flowers
,
D.
,
Aceves
,
S.
, and
Hessel
,
R.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multizone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
23.
Xu
,
C.
,
Pal
,
P.
,
Ren
,
X.
,
Sjöberg
,
M.
,
Van Dam
,
N.
,
Wu
,
Y.
,
Lu
,
T.
,
McNenly
,
M.
, and
Som
,
S.
,
2020
, “
Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042306
.
24.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
25.
Ewald
,
J.
, and
Peters
,
N.
,
2005
, “
A Level Set Based Flamelet Model for the Prediction of Combustion in Spark Ignition Engines
,”
15th International Multidimensional Engineering Models User Group
,
Detroit, MI
.
26.
Reitz
,
R.
,
1987
, “
Modeling of Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Sprays
,
3
(
4
), pp.
309
337
.
27.
Amsden
,
A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves
,”
Los Alamos National Laboratory Technical Report LA-13313-MS
.
28.
McCormick
,
R.
,
2018
, “
Co-Optimization of Fuels & Engines: Properties of Co-Optima Research Gasolines
,”
Technical Report
.
29.
Dam
,
N.
,
Sjöberg
,
M.
, and
Som
,
S.
,
2018
, “
Large-Eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-Injection Spark-Ignition Engine Under Non-Combusting Operating Conditions
,”
SAE Technical Paper No. 2018-01-0196
.
30.
Mehl
,
M.
,
Zhang
,
K.
,
Wagnon
,
S.
,
Kukkadapu
,
G.
,
Westbrook
,
C.
,
Pitz
,
W.
,
Zhang
,
Y.
,
Curran
,
H.
,
Al Rachidi
,
M.
,
Atef
,
N.
, and
Sarathy
,
M.
,
2017
, “
US National Combustion Meeting
,”
10th U.S. National Combustion Meeting
,
University of Maryland
,
Apr. 23–26
.
31.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
32.
Zheng
,
X. L.
,
Lu
,
T. F.
, and
Law
,
C. K.
,
1007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
367
375
.
33.
Leguille
,
M.
,
Ravet
,
F.
,
Le Moine
,
J.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2017
, “
Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine
,”
SAE Technical Paper No. 2017-01-0669
.
34.
Kim
,
S.
,
Kim
,
J.
,
Shah
,
A.
,
Scarcelli
,
R.
, and
Rockstroh
,
T.
,
2020
, “
Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines
,”
SAE Technical Paper No, 2020-01-1124
.
35.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
36.
Kodavasal
,
J.
,
Moiz
,
A. M.
,
Ameen
,
M.
, and
Som
,
S.
,
2018
, “
Using Machine Learning to Analyze Factors Determining Cycle-to-Cycle Variation in a Spark-Ignited Gasoline Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102204
.
37.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE Technical Paper No. 2016-01-0593
.
38.
Richards
,
K. J.
,
Probst
,
D. P. E.
,
Senecal
,
P. K.
, and
Scarcelli
,
R.
,
2014
, “
The Observation of Cyclic Variation in Engine Simulations When Using RANS Turbulence Modeling
,”
ASME
ICEF2014-5605.
39.
Scarcelli
,
R.
,
Wallner
,
T.
,
Richards
,
K.
,
Pomraning
,
E.
, and
Senecal
,
P. K.
,
2016
, “
A Detailed Analysis
of
the Cycle-To-Cycle Variations Featured by RANS Engine Modeling
,”
International Multidimensional Engine Modeling User’s Group Meeting
,
Detroit, MI
.
40.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
.
41.
Johansson
,
B.
,
1996
, “
Cycle to Cycle Variations in S.I. Engines—The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion
,”
SAE Technical Paper No. 962084
.
42.
Rashidi
,
M.
,
1981
, “
The Nature of Cycle-by-Cycle Variation in the S.I. Engine From High Speed Photographs
,”
Combust. Flame
,
42
, pp.
111
122
.
43.
Chen
,
C.
,
Ameen
,
M.
,
Wei
,
H.
,
Iyer
,
C.
,
Ting
,
F.
,
Vanderwege
,
B.
, and
Som
,
S.
,
2019
, “
LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine
,”
SAE Technical Paper No. 2019-01-0006
.
44.
Szybist
,
J. P.
, and
Splitter
,
D. A.
,
2017
, “
Pressure and Temperature Effects on Fuels With Varying Octane Sensitivity at High Load in SI Engines
,”
Combust. Flame
,
177
, pp.
49
66
.
45.
Szybist
,
J.
,
Wagnon
,
S.
,
Splitter
,
D.
,
Pitz
,
W.
, and
Mehl
,
M.
,
2017
, “
The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines
,”
SAE Int. J. Engines
,
10
(
5
), pp.
2305
2318
.
46.
Yue
,
Z.
, and
Som
,
S.
,
2019
, “
Fuel Property Effects on Knock Propensity and Thermal Efficiency in a Direct-Injection Spark-Ignition Engine
,”
Appl. Energy
,
281
(
11421
).
You do not currently have access to this content.