Abstract

This paper investigates the pressure dependency of a lean premixed jet injected into a lean vitiated crossflow with an experimentally verified detailed chemistry computational fluid dynamics (CFD) model and 53 species considered. Experimental data were taken in an axially staged combustor with an optically accessible test section, allowing the use of particle image velocimetry (PIV) and CH* chemiluminescence techniques as well as point measurement of species concentration, temperature, and pressure. The experimental data cases at one, three, and five atmospheres were selected to describe the flame stabilization dependency on pressure and gain the required knowledge for an extrapolation to engine condition. Simulated exit nitrogen oxide levels were validated with experimental emission data, and a global emission trend for the NO reduction at elevated pressure and constant turbine inlet temperature level was defined. The nitrogen oxide benefit at elevated operating pressure was justified with the significantly smaller flame surface area: the analysis of the simulated spanwise and top-view profiles showed a relatively short receded core flame with nitrogen oxide production in the center at high pressure relative to a longer and larger shear layer flame at atmospheric condition that produced NO toward the inner and outer side of the flame. Decomposition of the Damköhler number revealed the strong influence of the reaction timescales with higher reaction rates at elevated pressure, along with a moderate influence of the turbulent timescales, showing higher turbulence intensity in the lee-side recirculation zone at lower pressure.

References

1.
Laster
,
W. R.
,
Martin
,
S. M.
,
Bilbao
,
J. E. P.
,
Hardes
,
J.
, and
Fox
,
T. A.
,
2018
, “
Dual Outlet Nozzle for a Secondary Fuel Stage of a Combustor of a Gas Turbine Engine
,”
Patent US 10,139,111 B2, Siemens Energy, Inc.
2.
Martin
,
S. M.
,
Cai
,
W.
, and
Harris
,
J.
,
2013
, “
Apparatus and Method for Controlling the Secondary Injection of Fuel
,”
Patent US 8,387,398 B2, Siemens Energy, Inc.
3.
Venkataraman
,
K. K.
,
Washam
,
R. M.
,
Karim
,
H.
,
Terry
,
J. C.
, and
Davis
,
L. B.
,
2014
, “
Late Lean Injection System Configuration
,”
Patent US 8,701,383 B2, General Electric Company
.
4.
Venkataraman
,
K. K.
,
Terry
,
J. C.
,
Velkur
,
C. B.
, and
Karim
,
H.
,
2014
, “
Late Lean Injection Fuel Staging Configurations
,”
Patent US 8,707,707 B2, General Electric Company
.
5.
Elkady
,
A. M.
,
Herbon
,
J.
,
Kalitan
,
D. M.
,
Leonard
,
G.
,
Akula
,
R.
,
Karim
,
H.
, and
Hadley
,
M.
,
2012
, “
Gas Turbine Emission Characteristics in Perfectly Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061501
. 10.1115/1.4006058
6.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2002
, “
Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
197
203
. 10.1115/1.1488170
7.
Al-Malak
,
A.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Al-Zaharnah
,
I.
,
2016
, “
Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
031101
. 10.1115/1.4032617
8.
Kibrya
,
M. G.
, and
Karim
,
G. A.
,
1996
, “
Blowout Limits of a Jet Diffusion Flame in the Presence of Small Surrounding Jet Pilot Flames
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
140
144
. 10.1115/1.2792705
9.
Moore
,
N. J.
,
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2011
, “
Flame Hysteresis Effects in Methane Jet Flames in Air-Coflow
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022202
. 10.1115/1.4003806
10.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
. 10.1115/1.4026204
11.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2017
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022004
. 10.1115/1.4034232
12.
Elgammal
,
T.
, and
Amano
,
R. S.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-in-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
. 10.1115/1.4040075
13.
Khalil
,
A. E. E.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032201
. 10.1115/1.4006481
14.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2014
, “
Dual Injection Distributed Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011601
. 10.1115/1.4025020
15.
Safari
,
M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Large Eddy Simulation for Prediction of Entropy Generation in a Nonpremixed Turbulent Jet Flame
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022002
. 10.1115/1.4025974
16.
Deng
,
X.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
. 10.1115/1.4033141
17.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2019
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
. 10.1115/1.4040532
18.
Saini
,
P.
,
Chterev
,
I.
,
Pareja
,
J.
,
Aigner
,
M.
, and
Boxx
,
I.
,
2020
, “
Effect of Pressure on Hydrogen Enriched Natural Gas Jet Flames in Crossflow
,”
Flow Turbul. Combust.
,
105
, pp.
787
806
.
19.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Aigner
,
M.
,
2013
, “
Auto-Ignition and Flame Stabilization of Hydrogen/Natural Gas/Nitrogen Jets in a Vitiated Cross-Flow at Elevated Pressure
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16441
16452
. 10.1016/j.ijhydene.2013.09.137
20.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
, and
Aigner
,
M.
,
2010
, “
Experimental Imvestigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Condition
,”
Proceedings of ASME Turbo Expo.
,
Glasgow, UK
,
June 14–18
.
21.
Lückerath
,
R.
,
2015
, “
HTV-EB Robustes Hochtemperaturverbrennungssystem mit erweitertem Betriebsbereich
,”
Schlussbericht, Teile I + II
.
22.
Prathap
,
C.
,
Galeazzo
,
F. C. C.
,
Kasabov
,
P.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
,
Krebs
,
W.
, and
Wegner
,
B.
,
2012
, “
Analysis of NOx Formation in an Axially Staged Combustion System at Elevated Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031507
. 10.1115/1.4004720
23.
Simcenter STAR-CCM+® Documentation User Guide Version 14.04, 2019, © Siemens PLM Software
.
24.
Poinsot
,
T.
, and
Vernante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed., ©2004
Book News, Inc.
,
Portland, OR
.
25.
Borghi
,
R.
,
1985
, “On the Structure and Morphology of Turbulent Premixed Flames,”
Recent Advances in the Aerospace Sciences
,
Springer
,
Boston, MA
, pp.
117
138
.
26.
Genova
,
T.
,
Otero
,
M.
, and
Ahmed
,
K. A.
,
2020
, “
Partial Premixing Effects on the Reacting Jet of a High Pressure Axially Staged Combustor
,”
J. Eng. Gas Turbines Power.
27.
Nori
,
V. N.
, and
Seitzman
,
J. M.
,
2009
, “
CH* Chemiluminescence Modeling for Combustion Diagnostics
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
895
903
. 10.1016/j.proci.2008.05.050
28.
Yan
,
W.
,
Wang
,
C.
, and
Guo
,
J.
,
2012
, “
One Extended OTSU Flame Image Recognition Method Using RGBL and Stripe Segmentation
,”
Appl. Mech. Mater.
,
121–126
, pp.
2141
2145
.
29.
Combis
,
P.
,
Cormont
,
P.
,
Gallais
,
L.
,
Hebert
,
D.
,
Robin
,
L.
, and
Rullier
,
J.-L.
,
2012
, “
Evaluation of the Fused Silica Thermal Conductivity by Comparing Infrared Thermometry Measurements With Two-Dimensional Simulations
,”
Appl. Phys. Lett.
,
101
(
21
), p.
211908
. 10.1063/1.4764904
30.
Wray
,
K. L.
, and
Connolly
,
T. J.
,
1959
, “
Thermal Conductivity of Clear Fused Silica at High Temperatures
,”
J. Appl. Phys.
,
30
(
11
), pp.
1702
1705
. 10.1063/1.1735040
31.
Poinsot
,
T.
,
Gicquel
,
L.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Vermorel
,
O.
,
Wolf
,
P.
,
Boileau
,
M.
,
Colin
,
O.
,
Veynante
,
D.
,
Selle
,
L.
,
Sensiau
,
C.
,
Benoit
,
L.
,
Gullaud
,
E.
,
Berat
,
C.
, and
Moureau
,
V.
,
2013
, “
Flame/Wall Interactions in Combustion Chambers
,”
IMF Toulouse, CNRS and INPT, CERFACS Report
.
32.
Harvey
,
P. D.
,
1982
,
Engineering Properties of Steels
,
American Society for Metals
,
Metals Park, OH
.
33.
Peckner
,
D.
,
Bernstein
,
I. M.
, and
Peckner
,
D.
,
1977
,
Handbook of Stainless Steels
,
McGraw-Hill
,
New York
.
McGraw-Hill Book Company
.
34.
Stiehl
,
B.
,
Worbington
,
T.
,
Miegel
,
A.
,
Martin
,
S.
,
Velez
,
C.
, and
Ahmed
,
K.
,
2019
, “
Combustion and Emission Characteristics of a Lean Axial-Stage Combustor
,”
Proceedings of ASME TurboExpo 2019.
,
Phoenix, AZ
,
June 17–21
.
35.
Stiehl
,
B.
,
Worbington
,
T.
,
Woodard
,
A.
, and
Ahmed
,
K.
,
2020
, “
Numerical Simulation of an Axial-Staged Combustor at High Pressure
,”
2020 AIAA SciTech Forum and Exposition
,
Orlando, FL
,
Jan. 6–10
.
36.
Stiehl
,
B.
,
Otero
,
M.
,
Genova
,
T.
,
Worbington
,
T.
,
Reyes
,
J.
,
Ahmed
,
K.
,
Martin
,
S.
, and
Velez
,
C.
,
2021
, “
Simulation of Premixed and Partially Premixed Jet-in-Crossflow Flames at High-Pressure
,”
ASME J. Eng. Gas Turbines Power.
,
accepted manuscript
.10.1115/1.4049703
37.
Genova
,
T.
,
Otero
,
M.
,
Stiehl
,
B.
,
Reyes
,
J.
,
Ahmed
,
K.
, and
Martin
,
S.
,
2019
, “
Exploration of a Reacting Jet-in-Crossflow in a High-Pressure Axial Stage Combustor
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
.
38.
Otero
,
M.
,
Genova
,
T.
,
Reyes
,
J.
,
Stiehl
,
B.
,
Ahmed
,
K.
, and
Martin
,
S.
,
2019
, “
Characteristics of a Reacting Jet-in-Crossflow at Elevated Pressures
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
.
39.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner, Jr.
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
GRI-MECH 3.0
,” http://combustion.berkeley.edu/gri-mech/version30/text30.html
40.
Karalus
,
M.
,
2019
, “
Best Practices for RANS Combustion
”.
41.
Tominagaa
,
Y.
, and
Stathopoulos
,
T.
,
2007
, “
Turbulent Schmidt Numbers for CFD Analysis With Various Types of Flowfield
,”
Atmos. Environ.
,
41
(
37
), pp.
8091
8099
. 10.1016/j.atmosenv.2007.06.054
42.
Loparo
,
Z.
,
2015
, “
Validation of CFD Models of a Second-Stage Combustion System Using STAR-CCM+
,”
UTSR Internship Report University of Central Florida
.
43.
Amirante
,
R.
,
Distaso
,
E.
,
Tamburrano
,
P.
, and
Reitz
,
R. D.
,
2017
, “
Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural Gas and Gasoline for Spark-Ignition Engine Simulations
,”
Int. J. Engine Res.
,
18
(
9
), pp.
951
970
. 10.1177/1468087417720018
44.
Bhargava
,
A.
,
Kendrick
,
D. W.
,
Colket
,
M. B.
,
Sowa
,
W. M.
,
Casleton
,
K. H.
, and
Maloney
,
D. J.
,
2000
, “
Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines
,”
Proceedings of ASME Turbo Expo 2000
,
Munich, Germany
,
May 8–11
.
You do not currently have access to this content.