Abstract

Entropy wave, as the convecting hot spot, is one of the sources of combustion instabilities, which is less explored through the literature. Convecting in a highly turbulent flow of a combustor, entropy waves may experience some levels of dissipation and deformation. In spite of some earlier investigations in the zero acceleration flow, the extent of the wave decay has not been clear yet. Further, there exist no results upon the wave decay in non-zero accelerated flows. This is of crucial importance, as the wave passes through the end nozzle of the combustor or gas turbine stages. The current experiment, therefore, compares the wave decay in both flow of constant and variable bulk velocity, meaning, respectively, a uniform pipe and a convergent nozzle. The comparison will aid the theoretical models to reduce complexity by simplifying the relations of non-zero acceleration flow to those of no acceleration, as followed by the earlier effective-length method. Reynolds number and inlet turbulence intensity are considered as the governing hydrodynamic parameters for both investigated flows. The entropy wave is generated by an electrical heater module and detected using fast-response thermocouples. The results show that the entropy wave variation is point-wise and frequency-dependent. The accelerated flow of the nozzle is generally found to be more dissipative in comparison with the zero acceleration flow.

References

1.
T. C.
Lieuwen
, and
V.
Yang
, eds.,
2005
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Morovatiyan
,
M.
,
Shahsavan
,
M.
,
Aguilar
,
J.
, and
Mack
,
J. H.
,
2021
, “
Effect of Argon Concentration on Laminar Burning Velocity and Flame Speed of Hydrogen Mixtures in a Constant Volume Combustion Chamber
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032301
. 10.1115/1.4048019
3.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge
.
4.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
. 10.1115/1.4026204
5.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Darabiha
,
N.
,
Hakim
,
L.
, and
Schmitt
,
T.
,
2013
, “
Advances in Combustion and Propulsion Applications
,”
European J. Mech.—B/Fluids
,
40
, pp.
87
106
. 10.1016/j.euromechflu.2013.01.002
6.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. 10.1115/1.4042720
7.
Candel
,
S.
,
Durox
,
D.
,
Ducruix
,
S.
,
Birbaud
,
A. L.
,
Noiray
,
N.
, and
Schuller
,
T.
,
2009
, “
Flame Dynamics and Combustion Noise: Progress and Challenges
,”
Int. J. Aeroacoust.
,
8
(
1
), pp.
1
56
. 10.1260/147547209786234984
8.
Williams
,
J. F.
, and
Howe
,
M. S.
,
1975
, “
The Generation of Sound by Density Inhomogeneities in Low Mach Number Nozzle Flows
,”
J. Fluid Mech.
,
70
(
3
), pp.
605
622
. 10.1017/S0022112075002224
9.
Badra
,
J. A.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H. G.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052202
. 10.1115/1.4032622
10.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
(
R2
), pp.
1
11
. 10.1017/jfm.2013.448
11.
Fattahi
,
A.
,
Hosseinalipour
,
S. M.
, and
Karimi
,
N.
,
2017
, “
On the Dissipation and Dispersion of Entropy Waves in Heat Transferring Channel Flows
,”
Phys. Fluids
,
29
(
8
), p.
087104
. 10.1063/1.4999046
12.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
. 10.1016/j.jsv.2009.05.018
13.
Bake
,
F.
,
Michel
,
U.
, and
Roehle
,
I.
,
2007
, “
Investigation of Entropy Noise in Aero-Engine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
370
376
. 10.1115/1.2364193
14.
Bake
,
F.
,
Kings
,
N.
, and
Roehle
,
I.
,
2008
, “
Fundamental Mechanism of Entropy Noise in Aero-Engines: Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011202
. 10.1115/1.2749286
15.
Zukoski
,
E. E.
, and
Auerbach
,
J. M.
,
1976
, “
Experiments Concerning the Response of Supersonic Nozzles to Fluctuating Inlet Conditions
,”
J. Eng. Power
,
98
(
1
), pp.
60
64
. 10.1115/1.3446114
16.
Mühlbauer
,
B.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Investigation of the Fundamental Mechanism for Entropy Noise Generation in Aero-Engines
,”
Acta Acust. United Acust.
,
95
(
3
), pp.
470
478
. 10.3813/AAA.918171
17.
Leyko
,
M.
,
Moreau
,
S.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2011
, “
Numerical and Analytical Modelling of Entropy Noise in a Supersonic Nozzle With a Shock
,”
J. Sound Vib.
,
330
(
16
), pp.
3944
3958
. 10.1016/j.jsv.2011.01.025
18.
Giauque
,
A.
,
Huet
,
M.
, and
Clero
,
F.
,
2012
, “
Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111202
. 10.1115/1.4007318
19.
Durán
,
I.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2012
, “
Analytical and Numerical Study of Combustion Noise Through a Subsonic Nozzle
,”
AIAA J.
,
51
(
1
), pp.
42
52
. 10.2514/1.J051528
20.
Lourier
,
J. M.
,
Noll
,
B.
, and
Aigner
,
M.
,
2015
, “
Numerical Investigation of the Entropy Wave Generator Test Case Using Multirate Impedance Boundary Conditions
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
January
, p.
0101
.
21.
De Domenico
,
F.
,
Rolland
,
E. O.
, and
Hochgreb
,
S.
,
2017
, “
Detection of Direct and Indirect Noise Generated by Synthetic Hot Spots in a Duct
,”
J. Sound Vib.
,
394
, pp.
220
236
. 10.1016/j.jsv.2017.01.004
22.
Rolland
,
E. O.
,
De Domenico
,
F.
, and
Hochgreb
,
S.
,
2018
, “
Direct and Indirect Noise Generated by Entropic and Compositional Inhomogeneities
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082604
. 10.1115/1.4039050
23.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
264
270
. 10.1115/1.2132379
24.
Hield
,
P. A.
,
Brear
,
M. J.
, and
Jin
,
S. H.
,
2009
, “
Thermoacoustic Limit Cycles in a Premixed Laboratory Combustor With Open and Choked Exits
,”
Combust. Flame
,
156
(
9
), pp.
1683
1697
. 10.1016/j.combustflame.2009.05.011
25.
Hield
,
P. A.
, and
Brear
,
M. J.
,
2008
, “
Comparison of Open and Choked Premixed Combustor Exits During Thermoacoustic Limit Cycle
,”
AIAA J.
,
46
(
2
), pp.
517
526
. 10.2514/1.32650
26.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
. 10.1115/1.1365159
27.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
. 10.1080/00102202.2012.715828
28.
Persico
,
G.
,
Gaetani
,
P.
, and
Spinelli
,
A.
,
2017
, “
Assessment of Synthetic Entropy Waves for Indirect Combustion Noise Experiments in Gas Turbines
,”
Exp. Therm. Fluid. Sci.
,
88
, pp.
376
388
. 10.1016/j.expthermflusci.2017.06.012
29.
Carolan
,
D.
,
2009
, “
Measurement of the Transfer Function of a Combustor Exit Nozzle
,”
Doctoral dissertation
,
University of Melbourne, Department of Mechanical Engineering
.
30.
Hosseinalipour
,
S. M.
,
Fattahi
,
A.
,
Afshari
,
H.
, and
Karimi
,
N.
,
2017
, “
On the Effects of Convecting Entropy Waves on the Combustor Hydrodynamics
,”
Appl. Therm. Eng.
,
110
, pp.
901
909
. 10.1016/j.applthermaleng.2016.08.220
31.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2011
, “
Phase Prediction of the Response of Choked Nozzles to Entropy and Acoustic Disturbances
,”
J. Sound Vib.
,
330
(
21
), pp.
5184
5198
. 10.1016/j.jsv.2011.05.016
32.
Hosseinalipour
,
S. M.
,
Fattahi
,
A.
, and
Karimi
,
N.
,
2016
, “
Analytical Investigation of Non-Adiabatic Effects on the Dynamics of Sound Reflection and Transmission in a Combustor
,”
Appl. Therm. Eng.
,
98
, pp.
553
567
. 10.1016/j.applthermaleng.2015.12.116
33.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2010
,
Applied Statistics and Probability for Engineers
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Lighthill
,
J.
, and
Lighthill
,
M. J.
,
2001
,
Waves in Fluids
,
Cambridge University Press
,
Cambridge, UK
.
36.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
Core Noise From Gas Turbine Exhausts
,”
J. Sound Vib.
,
54
(
2
), pp.
297
309
. 10.1016/0022-460X(77)90031-1
You do not currently have access to this content.