Abstract

This paper highlights the expected versus actual outcomes of 152 energy assessments that were performed between 2011 and 2020. The 1317 energy-assessment recommendations (ARs) are grouped into eight categories. This study adopted four measures per each category of recommendations: annual electricity savings, annual gas savings, annual cost savings, and annual CO2 emission reduction. The first part of the analysis compares the expected to the actually implemented values of the measures applied to each recommendation’s category. It was found that the percentages of the actual to the expected electricity, gas, and cost savings are 26.6%, 11.4%, and 17.1%, respectively, while the percentage of the actual to the expected CO2 reduction is 22%. Moreover, the second part of the analysis presents each category's implementation rate and the reasons for rejecting the unimplemented ARs. Cash flow and expensive initial investment resulted in rejecting 25% of ARs. Furthermore, the study proposes techniques and strategies to increase ARs’ implementation rate and improve private energy services companies’ implementation rate. Finally, exergy analysis is added to show the improvement that energy assessment achieves regarding exergy and exergy efficiencies of different industrial applications.

References

1.
Stephen
,
R.
,
Tennnat
,
E.
,
Freyman
,
C.
,
Ozawa
,
J.
,
Chase
,
J.
, and
Querejazu
,
D.
,
2015
, “
Saving Energy, Building Skills: Industrial Assessment Centers Impact
,”
SRI International
.
2.
Trombley
,
D.
,
2014
, “
One Small Step for Energy Efficiency: Targeting Small- and Medium-Sized Manufacturers
,”
American-Council for an Energy-Efficient Economy
,
Washington, DC
.
3.
Sorrel
,
S.
,
Mallett
,
A.
, and
Nye
,
S.
,
2011
, “
Barriers to Industrial Energy Efficiency: A Literature Review
,”
United Nations Industrial Development Organization
,
Vienna
.
4.
Price
,
L.
, and
Lu
,
H.
,
2011
, “
Industrial Energy Auditing and Assessments: A Survey of Programs Around the World
,”
European Council for an Energy Efficient Economy
.
5.
Rozite
,
V.
,
Crittenden
,
P.
,
Rebalski
,
E.
, and
Warren
,
P.
,
2015
, “
Accelerating Energy Efficiency in Small and Medium-Sized Enerprises
,”
International Energy Agency
,
Paris
.
6.
Abbas
,
A.
,
Saravani
,
M.
,
Al-Haddad
,
M.
,
Amano
,
R.
, and
Qandil
,
M.
,
2018
, “
A Comparative Study of Industrial Energy Assessments for Small- and Medium-Sized Industrial Facilities
,”
12th Conference on Energy Sustainability
,
Lake Buena Vista, FL
,
June 24–28
.
7.
Abdelhadi
,
A.
,
Salem
,
A.
,
Abbas
,
A.
,
Qandil
,
A.
, and
Amano
,
R.
,
2021
, “
Study of Energy Saving Analysis for Different Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052101
.
8.
Espindola
,
J.
,
Nourin
,
F.
,
Qandil
,
M.
,
Abdelhadi
,
A.
, and
Amano
,
R.
,
2021
, “
Energy Saving Analysis Using Energy Intensity Usage and Specific Energy Consumption Methods
,”
Int. J. Energy Clean Environ.
,
22
(
1
), pp.
15
29
.
9.
Selim
,
O.
,
Abousabae
,
M.
,
Hasan
,
A.
, and
Amano
,
R.
,
2021
, “
Analysis of Energy Savings and CO2 Emission Reduction Contribution for Industrial Facilities in USA
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082303
.
10.
O'Connor
,
K.
, and
Torrey
,
D.
,
2011
, “
Hydropower From Wastewater
,”
New York State Energy Research and Development Authority
,
Albany, NY
.
11.
Abbas
,
A.
,
Al-Haddad
,
M.
,
Saravani
,
M.
, and
Amano
,
R.
,
2018
, “
Net-Zero-Energy Wastewater Treatment Plants
,”
AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
.
12.
Qandil
,
M.
,
Abbas
,
A.
,
Al-Haddad
,
M.
, and
Amano
,
R.
,
2019
, “
Energy Consumption, Energy-Saving and Emmisions Reduction of Wastewater Treatment Plants in Wisconsin
,”
AIAA Propulsion and Energy Forum
,
Indianapolis, IN
,
Aug. 19–22
.
13.
Abbas
,
A.
,
Qandil
,
M.
,
Al-Haddad
,
M.
,
Saravani
,
M.
, and
Amano
,
R.
,
2019
, “
Utilization of Hydroturbines in Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062011
.
14.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Micro Kaplan Hydro-Turbine Performance Using Multi-Disciplinary Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052101
.
15.
Alkhalidi
,
A.
,
Bryar
,
P.
, and
Amano
,
R.
,
2016
, “
Improving Mixing in Water Aeration Tanks Using Innovative Self-Powered Mixer and Power Reclamation From Aeration Tank
,”
Jordan J. Mech. Ind. Eng.
,
10
(
3
), pp.
211
214
.
16.
Hasan
,
A.
,
Salem
,
A. R.
,
Hadi
,
A. A.
,
Qandil
,
M.
,
Amano
,
R. S.
, and
Alkhalidi
,
A.
,
2021
, “
The Power Reclamation of Utilizing Micro-Hydro Turbines in the Aeration Basins of Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
081301
.
17.
Alkhafaji
,
A.
, and
Amano
,
R.
,
2020
, “
Evaluation of Ceramic and Membrane Diffusers Under Different Water Columns With Pulsating Airflow Method
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
145
167
.
18.
Selim
,
O.
, and
Amano
,
R.
,
2021
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011301
.
19.
Selim
,
O.
,
Hussein
,
M.
, and
Amano
,
R.
,
2020
, “
Effect of Heating Rate on Chemical Kinetics of Chicken Manure With Different Gas Agents
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102104
.
20.
Espindola
,
J.
,
Selim
,
O.
, and
Amano
,
R.
,
2021
, “
Co-Pyrolysis of Rice Husk and Chicken Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022101
.
21.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K.
,
Wnukowski
,
M.
, and
Niedzwiecki
,
L.
,
2018
, “
Slow Pyrolysis of Sewage Sludge With Additives: Calcium Oxide and Lignite
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062206
.
22.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Krochmalny
,
K.
,
Kowal
,
M.
,
Baranowski
,
M.
,
Zgóra
,
J.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
, and
Niedzwiecki
,
L.
,
2019
, “
The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070701
.
23.
Diaz
,
L.
,
Savage
,
G.
,
Trezek
,
G.
, and
Golueke
,
C.
,
1981
, “
Biogasification of Municipal Solid Wastes
,”
ASME J. Energy Resour. Technol.
,
103
(
2
), pp.
180
185
.
24.
Chavez
,
A.
,
Morales
,
R.
,
Gonzalez
,
C.
, and
Moya
,
F.
,
2020
, “
Production of Ethanol From Two Varieties of Potato Peel Waste Through Cellulolytic and Amylolytic Enzymes
,”
Int. J. Energy Clean Environ.
,
21
(
1
), pp.
41
58
.
25.
Buraimoh
,
O.
,
Olusola
,
O.
,
Humphrey
,
I.
,
Raheem
,
I.
,
Onyekachi
,
U.
, and
Ogundipe
,
O.
,
2020
, “
Bioconversion of Organic Wastes for Sustainable Biogas Production Using Locally Sourced Materials
,”
Int. J. Energy Clean Environ.
,
21
(
3
), pp.
201
219
.
26.
Evins
,
R.
,
2013
, “
A Review of Computational Optimization Methods Applied to Sustainable Building Design
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
230
245
.
27.
Hasan
,
A.
,
ElGammal
,
T.
,
Amano
,
R.
, and
Khalil
,
E.
,
2018
, “
Flow Patterns and Temperature Distribution in an Underground Metro Station
,”
ASME 2018 Power & Energy Conference and Exhibition
,
Lake Buena Vista, FL
,
June 24–28
.
28.
Al-Haddad
,
M.
,
Jaber
,
H.
,
Abbas
,
A.
,
Qandil
,
M.
,
Saravani
,
M.
, and
Amano
,
R.
,
2019
, “
Energy Value Analysis of an Office Building: Case Study
,”
AIAA SciTech Forum
,
San Diego, CA
,
Jan. 7–11
.
29.
Hasan
,
A.
,
Jackson
,
R.
, and
Amano
,
R.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
30.
Hasan
,
A.
,
ElGammal
,
T.
,
Jackson
,
R.
, and
Amano
,
R.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
31.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
32.
Jackson
,
R.
,
2016
, “
Application of Reynolds Stress Model Using Direct Modeling and Actuator Disk Approaches for a Small-Scale Wind Turbine
,”
University of Wisconsin-Milwaukee
,
Milwaukee, WI
.
33.
Nedaei
,
M.
,
Walsh
,
P.
, and
Assareh
,
E.
,
2020
, “
sustainable Energy Planning of a Wind Power Plant by Coordinating Clean Development Strategies
,”
Int. J. Energy Clean Environ.
,
21
(
1
), pp.
59
89
.
34.
Giacone
,
E.
,
Mancò
,
S.
, and
Gabriele
,
P.
,
2008
, “
Energy Management Techniques for Small- and Medium-Sized Companies
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
012002
.
35.
Ozlap
,
N.
,
2009
, “
Utilization of Heat, Power, and Recovered Waste Heat for Industrial Processes in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022401
.
36.
Cagno
,
E.
, and
Trianni
,
A.
,
2012
, “
Analysis of the Most Effective Energy Efficiency Opportunities in Manufacturing Primary Metals, Plastics, and Textiles Small- and Medium-Sized Enterprises
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021005
.
37.
Neri
,
M.
,
Lezzi
,
A. M.
,
Beretta
,
G. P.
, and
Pilotelli
,
M.
,
2019
, “
Energy- and Exergy-Based Analysis for Reducing Energy Demand in Heat Processes for Aluminum Casting
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
104501
.
38.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071201
.
39.
Vedrtnam
,
A.
,
Upadhyay
,
M.
, and
Kalauni
,
K.
,
2019
, “
Experimental and Theoretical Studies of the Heat Transfer Characteristics of the Lab-Scale Sensible Heat Storage System
,”
Int. J. Energy Clean Environ.
,
20
(
2
), pp.
167
193
.
40.
Al-Hadban
,
Y.
,
Sreekanth
,
K.
,
Al-Taqi
,
H.
, and
Alasseri
,
R.
,
2018
, “
Implementation of Energy Efficiency Strategies in Cooling Towers—A Techno-Economic Analysis
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012001
.
41.
Dutta
,
A.
, and
Samanta
,
A.
,
2020
, “
Determining Factor/s of Window Glazing Regarding Reduction in Electrical Energy Consumption
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032101
.
42.
Rashed
,
M.
,
Huzayyin
,
O.
,
Kassem
,
M.
, and
Kaseb
,
S.
,
2020
, “
A Novel Thermodynamic Design Model of a new HFO Refrigerant Single-Phase Vapor Jet Cooling System
,”
Int. J. Refrig.
,
110
, pp.
153
167
.
43.
Xu
,
C.
,
Chen
,
L.
, and
Amano
,
R.
,
2020
, “
Design and Analysis of Energy-Efficient Low-Flow Centrifugal Compressors
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081307
.
44.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2021
, “
Comparative Study of Various Constant-Pressure Compressed Air Energy Storage Systems Based on Energy and Exergy Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052001
.
45.
2019
, “
Renewables 2019 Global Status Report
,”
REN21 Secretariat
,
Paris
.
46.
Cengel
,
Y.
, and
Boles
,
M.
,
2004
,
Thermodynamics: An Engineering Approach
, 5th ed.,
McGraw-Hill, New York
.
47.
Rosen
,
M. A.
, and
Dincer
,
I.
,
1997
, “
Sectoral Energy and Exergy Modeling of Turkey
,”
ASME J. Energy Resour. Technol.
,
119
(
3
), pp.
200
204
.
48.
Sahin
,
A.
,
Dincer
,
I.
, and
Rosen
,
M.
,
2007
, “
Thermodynamic Analysis of Solar Photovoltaic Cell Systems
,”
Sol. Energy Mater. Sol. Cells
,
91
(
2
), pp.
153
159
.
You do not currently have access to this content.