Abstract

This paper presents a dynamics model for the down-hole directional drilling system based on a hybrid modeling method with model order reduction. Due to the long dimension of the drill string, a drilling model purely based on numerical methods such as the finite element method (FEM) may require a large number of meshes, which induces high computational intensity. By using a hybrid method combining FEM and the transfer matrix method (TMM), the order of the model can be significantly reduced. To further reduce the modeling order, a proper orthogonal decomposition (POD)-Galerkin projection-based approach is applied, and a set of linear normal modes (LNMs) are identified to create a reduced-order projection subspace. To this end, simulation results are presented to prove that the method can effectively capture the dominant modes of the drilling dynamics, and a computationally efficient and high fidelity reduced-order hybrid model can be reached for real-time state estimation and control design.

References

1.
Tian
,
D.
, and
Song
,
X.
,
2018
, “
Observer Design for a Wellbore Drilling System With Downhole Measurement Feedback
,”
ASME J. Dyn. Syst. Meas. Control.
,
140
(
7
), p.
071012
.
2.
Ke
,
C.
, and
Song
,
X.
,
2019
, “
Drilling Control System Using An Equivalent Input Disturbance-Based Control With a Neutral-Type Axial-Torsional Coupled Dynamics Model
,”
ASME J. Dyn. Syst. Meas. Control.
,
141
(
12
), p.
121013
.
3.
Ghasemi
,
M.
, and
Song
,
X.
,
2018
, “
Trajectory Tracking and Rate of Penetration Control of Downhole Vertical Drilling System
,”
ASME J. Dyn. Syst. Meas. Control.
,
140
(
9
), p.
091003
.
4.
Ke
,
C.
, and
Song
,
X.
,
2020
, “
An LMI Based Approach to Stabilize a Type of Nonlinear Uncertain Neutral-Type Delay Systems
,”
Int. J. Dyn. Control
, pp.
1
9
.
5.
Feng
,
T.
,
Kim
,
I.
, and
Chen
,
D.
,
2018
, “
Dynamic Modeling of Directional Drillstring: A Linearized Model Considering Well Profile
,”
ASME J. Dyn. Syst. Meas. Control.
,
140
(
6
), p.
061005
.
6.
Pabon
,
J. A.
,
Wicks
,
N.
,
Chang
,
Y.
,
Dow
,
B.
, and
Harmer
,
R. J.
2010
, “
Modeling Transient Vibrations While Drilling Using a Finite Rigid Body Approach
,”
SPE Deepwater Drilling and Completions Conference
,
Society of Petroleum Engineers
,
Galveston, TX
.
7.
Rudat
,
J.
, and
Dashevskiy
,
D.
,
2011
, “
Development of An Innovative Model-Based Stick/Slip Control System
,” SPE/IADC Drilling Conference and Exhibition,
Society of Petroleum Engineers
,
Amsterdam, The Netherlands
.
8.
Saldivar
,
B.
,
Mondié
,
S.
,
Niculescu
,
S.-I.
,
Mounier
,
H.
, and
Boussaada
,
I.
,
2016
, “
A Control Oriented Guided Tour in Oilwell Drilling Vibration Modeling
,”
Ann. Rev. Control
,
42
, pp.
100
113
.
9.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2007
, “
A Simplified Model to Explore the Root Cause of Stick–Slip Vibrations in Drilling Systems With Drag Bits
,”
J. Sound. Vib.
,
305
(
3
), pp.
432
456
.
10.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Coupled Axial-Torsional Dynamics in Rotary Drilling With State-dependent Delay: Stability and Control
,”
Nonlinear Dyn.
,
78
(
3
), pp.
1891
1906
.
11.
Ghasemloonia
,
A.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2015
, “
A Review of Drillstring Vibration Modeling and Suppression Methods
,”
J. Petroleum Sci. Eng.
,
131
, pp.
150
164
.
12.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound. Vib.
,
252
(
3
), pp.
527
544
.
13.
Rathinam
,
M.
, and
Petzold
,
L. R.
,
2003
, “
A New Look At Proper Orthogonal Decomposition
,”
SIAM J. Numer. Anal.
,
41
(
5
), pp.
1893
1925
.
14.
Detournay
,
E.
,
Richard
,
T.
, and
Shepherd
,
M.
,
2008
, “
Drilling Response of Drag Bits: Theory and Experiment
,”
Int. J. Rock Mech. Mining Sci.
,
45
(
8
), pp.
1347
1360
.
15.
Liu
,
G.-R.
, and
Quek
,
S. S.
,
2013
,
The Finite Element Method: A Practical Course
,
Butterworth-Heinemann
,
Bristol, UK
.
16.
Ke
,
C.
, and
Song
,
X.
,
2017
, “
Computationally Efficient Down-Hole Drilling System Dynamics Modeling Integrating Finite Element and Transfer Matrix
,”
ASME J. Dyn. Syst. Meas. Control.
,
139
(
12
), p.
121003
.
17.
Han
,
J.-H.
,
Kim
,
Y.-J.
, and
Karkoub
,
M.
,
2013
, “
Modeling of Wave Propagation in Drill Strings Using Vibration Transfer Matrix Methods
,”
J. Acoust. Soc. Am.
,
134
(
3
), pp.
1920
1931
.
18.
Christoforou
,
A.
, and
Yigit
,
A.
,
1997
, “
Dynamic Modelling of Rotating Drillstrings With Borehole Interactions
,”
J. Sound. Vib.
,
206
(
2
), pp.
243
260
.
19.
Carlberg
,
K.
,
Barone
,
M.
, and
Antil
,
H.
,
2017
, “
Galerkin V. Least-Squares Petrov–Galerkin Projection in Nonlinear Model Reduction
,”
J. Comput. Phys.
,
330
, pp.
693
734
.
20.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
New York
.
21.
Vromen
,
T.
,
2015
, “
Control of Stick-slip Vibrations in Drilling Systems
,” Ph.D. Dissertation,
Eindhoven University of Technology
,
Eindhoven, The Netherlands
.
You do not currently have access to this content.