Abstract

Growing environmental concerns and demand for a better fuel economy are driving forces that motivate the research for more advanced engines. Multi-mode combustion strategies have gained attention for their potential to provide high thermal efficiency and low emissions for light-duty applications. These strategies target optimizing the engine performance by correlating different combustion modes to load operating conditions. The extension from boosted spark ignition (SI) mode at high loads to advanced compression ignition (ACI) mode at low loads can be achieved by increasing the compression ratio and utilizing intake air heating. Further, in order to enable an accurate control of intake charge condition for ACI mode and rapid mode-switches, it is essential to gain fundamental insights into the autoignition process. Within the scope of ACI, homogeneous charge compression ignition (HCCI) mode is of significant interest. It is known for its potential benefits, operation at low fuel consumption, low NOx, and particulate matter (PM) emissions. In the present work, a virtual Cooperative Fuel Research (CFR) engine model is used to analyze fuel effects on ACI combustion. In particular, the effect of fuel octane sensitivity (S) (at constant Research Octane Number (RON)) on autoignition propensity is assessed under beyond-RON (BRON) and beyond-MON (BMON) ACI conditions. The three-dimensional CFR engine computational fluid dynamics (CFD) model employs a finite-rate chemistry approach with a multi-zone binning strategy to capture autoignition. Two binary blends with Research Octane Number (RON) of 90 are chosen for this study: primary reference fuel (PRF) with S = 0 and toluene–heptane (TH) blend with S = 10.8, representing paraffinic and aromatic gasoline surrogates. Reduced mechanisms for these blends are generated from a detailed gasoline surrogate kinetic mechanism. Simulation results with the reduced mechanisms are validated against experimental data from an in-house CFR engine, with respect to in-cylinder pressure, heat release rate, and combustion phasing. Thereafter, the sensitivity of combustion behavior to ACI operating condition (BRON versus BMON), air-fuel ratio (λ = 2 and 3), and engine speed (600 and 900 rpm) is analyzed for both fuels. It is shown that the sensitivity of a fuel’s autoignition characteristics to λ and engine speed significantly differs at BRON and BMON conditions. Moreover, this sensitivity is found to vary among fuels, despite the same RON. It is also observed that the presence of low-temperature heat release (LTHR) under BRON condition leads to more sequential autoignition and longer combustion duration than BMON condition. Finally, the study indicates that the octane index (OI) fails to capture the trend in the variation of autoignition propensity with S under the BMON condition.

References

1.
Kalghatgi
,
G. T.
,
2013
,
Fuel/Engine Interactions
,
SAE International
,
Warrendale, PA
.
2.
Chen
,
C.
,
Pal
,
P.
,
Ameen
,
M.
,
Feng
,
D.
, and
Wei
,
H.
,
2020
, “
Large-Eddy Simulation Study on Cycle-to-Cycle Variation of Knocking Combustion in a Spark Ignition Engine
,”
Appl. Energy
,
261
(
1
), p.
114447
. 10.1016/j.apenergy.2019.114447
3.
Kukkadapu
,
G.
,
Kumar
,
K.
,
Sung
,
C. J.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2015
, “
Autoignition of Gasoline Surrogates at low Temperature Combustion Conditions
,”
Combust. Flame
,
162
(
5
), pp.
2272
2285
. 10.1016/j.combustflame.2015.01.025
4.
Epping
,
K.
,
Aceves
,
S.
,
Bechtold
,
R.
, and
Dec
,
J. E.
2002
. “
The Potential of HCCI Combustion for High Efficiency and low Emissions
,”
SAE Technical Paper 2002-01-1923
.
5.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
, and
Viollet
,
Y.
,
2012
. “
Enabling High Efficiency Direct Injection Engine with Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion
,”
SAE Technical Paper; 2012-01-0677
.
6.
Calam
,
A.
,
Aydoğan
,
B.
, and
Halis
,
S.
,
2020
, “
The Comparison of Combustion, Engine Performance and Emission Characteristics of Ethanol, Methanol, Fusel oil, Butanol, Isopropanol and Naphtha with n-Heptane Blends on HCCI Engine
,”
Fuel
,
226
, p.
117071
. 10.1016/j.fuel.2020.117071
7.
Sun
,
C.
,
Kang
,
D.
,
Bohac
,
S. V.
, and
Boehman
,
A. L.
,
2016
, “
Impact of Fuel and Injection Timing on Partially Premixed Charge Compression Ignition Combustion
,”
Energy Fuels
,
30
(
5
), pp.
4331
4345
. 10.1021/acs.energyfuels.6b00257
8.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity-Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Combust. Sci
,
46
, pp.
12
71
. 10.1016/j.pecs.2014.05.003
9.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effects of Thermal and Compositional Stratification on the Ignition and Duration of Homogeneous Charge Compression Ignition Combustion
,”
Combust. Flame
,
162
(
2
), pp.
451
461
. 10.1016/j.combustflame.2014.07.026
10.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2007
, “
Comparing Late Cycle Autoignition Stability for Single and two Stage Ignition Fuels in HCCI Engines
,”
Proc. Combust. Inst
,
31
(
2
), pp.
2895
2902
. 10.1016/j.proci.2006.08.010
11.
Kim
,
S.
,
Kim
,
J.
,
Shah
,
A.
,
Pal
,
P.
,
Scarcelli
,
R.
,
Rockstroh
,
T.
,
Som
,
S.
,
Wu
,
Y.
, and
Lu
,
T.
,
2019
, “
Numerical Study of Advanced Compression Ignition and Combustion in a Gasoline Direct Injection Engine
,”
Proceedings of the ASME 2019 ICEF Division Fall Technical Conference
,
ICEF2019-7281
, p.
V001T06A013
. 10.1115/ICEF2019-7281
12.
Jain
,
S. K.
, and
Aggarwal
,
S. K.
,
2018
, “
Compositional Effects on the Ignition and Combustion of low Octane Fuels Under Diesel Conditions
,”
Fuel
,
220
, pp.
654
670
. 10.1016/j.fuel.2018.02.015
13.
Fu
,
X.
, and
Aggarwal
,
S. K.
,
2015
, “
Two Stage Ignition and NTC Phenomenon in Diesel Engines
,”
Fuel
,
144
, pp.
188
196
. 10.1016/j.fuel.2014.12.059
14.
Liu
,
H.
,
Yao
,
M.
,
Zhang
,
B.
, and
Zheng
,
Z.
,
2009
, “
Influence of Fuel and Operating Conditions on Combustion Characteristic of a Homogeneous Charge Compression Ignition
,”
Energy Fuel
,
23
(
3
), pp.
1422
1430
. 10.1021/ef800950c
15.
Cui
,
Y.
,
Liu
,
H.
,
Geng
,
C.
,
Tang
,
Q.
,
Feng
,
L.
,
Wang
,
Y.
,
Yi
,
W.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2020
, “
Optical Diagnostics on the Effects of Fuel Properties and Coolant Temperatures on Combustion Characteristic and Flame Development Progress From HCCI to CDC via PPC
,”
Fuel
,
269
, p.
117441
. 10.1016/j.fuel.2020.117441
16.
Pal
,
P.
,
Keum
,
S. H.
, and
Im
,
H. G.
,
2015
, “
Assessment of Flamelet Versus Multizone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
3
), pp.
280
290
. 10.1177/1468087415571006
17.
Keum
,
S. H.
,
Pal
,
P.
,
Im
,
H. G.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2015
, “
Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions
,”
Int. J. Engine Res.
,
17
(
4
), pp.
413
420
. 10.1177/1468087415583597
18.
Fu
,
X.
, and
Aggarwal
,
S. K.
,
2015
, “
Fuel Unsaturation Effects on NOx and PAH Formation in Spray Flames
,”
Fuel
,
160
, pp.
1
15
. 10.1016/j.fuel.2015.07.075
19.
Pal
,
P.
,
Valorano
,
M.
,
Arias
,
P. G.
,
Im
,
H. G.
,
Woolridge
,
M. S.
,
Ciottoli
,
P. P.
, and
Galassi
,
R. M.
,
2017
, “
Computational Characterization of Ignition Regimes in a Syngas/Air Mixture With Temperature Fluctuations
,”
Proc. Combust. Inst
,
36
(
3
), pp.
3705
3716
. 10.1016/j.proci.2016.07.059
20.
Im
,
H. G.
,
Pal
,
P.
,
Wooldrige
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures With Turbulent Velocity and Temperature Fluctuations.” Combust
,”
Sci. Tech
,
187
(
8
), pp.
1263
1275
. 10.1080/00102202.2015.1034355
21.
Pal
,
P.
,
Mansfield
,
A. B.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
Characteristics of Syngas Auto-Ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities
,”
Energy Procedia
,
66
, pp.
1
4
. 10.1016/j.egypro.2015.02.003
22.
Pal
,
P.
,
Mansfield
,
A. B.
,
Arias
,
P. G.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and low-Temperature Conditions with Thermal Inhomogeneities
,”
Combust. Theory Modelling
,
19
(
5
), pp.
587
601
. 10.1080/13647830.2015.1068373
23.
Pal
,
P.
,
2016
. “
Computational Modelling and Analysis of low Temperature Combustion Regimes for Advanced Engine Applications
.”
Ph.D. Dissertation
,
University of Michigan
,
Ann Arbor, MI
.
24.
Shibata
,
G.
,
Oyama
,
K.
,
Urushihara
,
T.
, and
Nakano
,
T.
2004
, “
The Effect of Fuel Properties on low and High Temperature Heat Release and Resulting Performance of an HCCI Engine
,”
SAE Technical Paper 2004-01-0553
.
25.
Lu
,
X.
,
Hou
,
Y.
,
Zu
,
L.
, and
Huang
,
Z.
,
2006
, “
Experimental Study on the Autoignition and Combustion Characteristics in the Homogeneous Charge Compression Ignition (HCCI) Combustion Operation with Ethanol/n-Heptane Blend Fuels by Port Injection
,”
Fuel
,
85
(
17–18
), pp.
2622
2631
. 10.1016/j.fuel.2006.05.003
26.
Sjöberg
,
M.
, and
Dec
,
J. E.
2007
, “
EGR and Intake Boost for Managing HCCI low Temperature Heat Release Over Wide Ranges of Engine Speed
,”
SAE Technical Paper 2007-01-0051
.
27.
Waqas
,
M. U.
,
Hoth
,
A.
,
Kolodziej
,
C. P.
,
Rockstroh
,
T.
,
Pulpeiro Gonzalez
,
J.
, and
Johansson
,
B.
,
2019
, “
Detection of low Temperature Heat Release (LTHR) in the Standard Cooperative Fuel Research (CFR) Engine in Both SI and HCCI Combustion Modes
,”
Fuel
,
256
, p.
115745
. 10.1016/j.fuel.2019.115745
28.
Lawler
,
B.
,
Mamalis
,
S.
,
Joshi
,
S.
,
Lacey
,
J.
,
Guralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
,
2017
, “
Understanding the Effect of Operating Conditions on Thermal Stratification and Heat Release in a Homogeneous Charge Compression Ignition Engine
,”
Appl. Therm. Eng.
,
112
, pp.
392
402
. 10.1016/j.applthermaleng.2016.10.056
29.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A new Advanced low Temperature Combustion Mode with Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
. 10.1016/j.apenergy.2016.11.034
30.
Yu
,
R.
,
Bai
,
X. S.
,
Lehtiniemi
,
H.
,
Ahmed
,
S. S.
,
Mauss
,
F.
,
Ritcher
,
M.
,
Alden
,
M.
,
Hildingsson
,
L.
,
Johansson
,
B.
, and
Hultqvist
,
A.
2006
, “
Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Engine
,”
SAE Technical Paper 2006-01-3318
.
31.
Joelsson
,
T.
,
Yu
,
R.
,
Sjoholm
,
J.
,
Tunestal
,
P.
, and
Bai
,
X. S.
2010
, “
Effects of Negative Valve Overlap on the Auto-Igntion Process of Lean Ethanol/air Mixture in HCCI Engines
,”
SAE Technical Paper 2010-01-2235
.
32.
Sofianopoulos
,
A.
,
Boldaji
,
M. R.
,
Lawler
,
B.
, and
Mamalis
,
S.
2018
, “
Analysis of Thermal Stratification Effects in HCCI Engines Using Large Eddy Simulations and Detailed Chemical Kinetics
,”
SAE Technical Paper 2018-01-0189
.
33.
Dronniou
,
N.
, and
Dec
,
J. E.
,
2012
, “
Investigating the Development of Thermal Stratification From Near Wall Regions to the Bulk gas in an HCCI Engine with Planar Imaging Thermometry
,”
SAE Int. J. Eng.
,
5
(
2012-01-1111
), pp.
1046
1074
. 10.4271/2012-01-1111
34.
Snyder
,
J.
,
Dronniou
,
N.
,
Dec
,
J.
, and
Hanson
,
R.
,
2011
, “
PLIF Measurements of Thermal Stratification in an HCCI Engine Under Fired Operation
,”
SAE Int. J. Eng.
,
4
(
1
), pp.
1669
1688
. (2011-01-1291). 10.4271/2011-01-1291
35.
Yang
,
Y.
,
Dec
,
J.
,
Dronniou
,
N.
,
Sjöberg
,
M.
, and
Cannella
,
W.
,
2011
, “
Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting pre-Ignition Reactions of two Staged Ignition Fuels
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1903
1920
. 10.4271/2011-01-1359
36.
Tao
,
M.
,
Zhao
,
P.
,
Szybist
,
J. P.
,
Lynch
,
P.
, and
Ge
,
H.
,
2019
, “
Insights Into Engine Autoignition: Combining Engine Thermodynamic Trajectory and Fuel Ignition Delay iso-Contour
,”
Combust. Flame
,
200
, pp.
207
218
. 10.1016/j.combustflame.2018.11.025
37.
Pintor
,
D. L.
,
Dec
,
J.
, and
Gentz
,
G.
2019
, “
ϕ-sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property
,”
SAE Technical Paper 2019-01-0961
.
38.
Kalghatgi
,
G.
,
Babiker
,
H.
, and
Badra
,
J.
,
2015
, “
A Simple Method to Predict Knock Using Toluene, n-Heptane and iso-Octane Blends (TPRF) as Gasoline Surrogates
,”
SAE Int. J. Engines
,
8
(
2
), pp.
505
519
. 10.4271/2015-01-0757
39.
Singh
,
E.
,
Badra
,
J.
,
Mehl
,
M.
, and
Sarathy
,
S. M.
,
2017
, “
Chemical Kinetics Insights Into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures
,”
Energy Fuels
,
31
(
2
), pp.
1945
1960
. 10.1021/acs.energyfuels.6b02659
40.
Leppard
,
W. R.
,
1990
, “
The Chemical Origin of Fuel Octane Sensitivity
,”
SAE J. Fuels Lubr.
, pp.
862
876
.
41.
Szybist
,
S.
, and
Splitter
,
D.
,
2018
, “
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
,”
Fuel
,
217
, pp.
370
381
. 10.1016/j.fuel.2017.12.100
42.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2020
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark Ignition Conditions
,”
ASME J. Energy Resour. Technol
,
143
(
3
), p.
032305
.10.1115/1.4048995
43.
Pintor
,
D. L.
, and
Dec
,
J.
,
2020
, “
Understanding the Performance of OI in LTGC Engines From Beyond MON to Beyond RON
,”
Advanced Engine Combustion Review Meeting
,
Livermore, CA
,
Feb. 3–6
.
44.
Pintor
,
D. L.
,
Dec
,
J.
, and
Gentz
,
G.
,
2020
, “
Experimental Evaluation of a Custom Gasoline Like Blend Designed to Simultaneously Improve phi-Sensitivity, RON and Octane Sensitivity
,”
SAE Technical Paper 2020-01-1136
.
45.
ASTM D2699-12
,
2012
,
Standard Test Method for Research Octane Number of Spark Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
.
46.
ASTM D2700-16
,
2016
,
Standard Test Method for Motor Octane Number of Spark Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
.
47.
Hoth
,
A.
,
Gonzalez
,
P. J.
,
Kolodziej
,
C.
, and
Rockstroh
,
T.
,
2019
, “
Effects of Lambda on Knocking Characteristics and RON Rating
,”
SAE Int. J. Adv. & Curr. Prac. Mobility
,
1
(
3
), pp.
1188
1201
. 10.4271/2019-01-0627
48.
Pal
,
P.
,
Kolodziej
,
C.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Sariano
,
J. G.
,
Wu
,
Y.
,
Lu
,
T.
, and
See
,
Y. C.
,
2018
, “
“Development of a Virtual CFR Engine Model for Knocking Combustion Analysis” SAE Int
,”
J. Engines
,
11
(
6
), pp.
1069
1082
. 10.4271/2018-01-0187
49.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
. 10.1115/1.4040063
50.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2017
, “
Multi-dimensional CFD Simulations of Knocking Combustion in a CFR Engine
,”
Proceedings of the ASME 2019 ICEF Division Fall Technical Conference
,
ICEF2019-7284: V002T06A017
10.1115/ICEF2019-7284.
51.
CONVERGE
2016
2.3 Theory Manual
,
Convergent Science Inc.
,
Middleton, WI
.
52.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
. 10.4271/2017-01-0578
53.
Pei
,
Y.
,
Pal
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
,
Futterer
,
C.
,
Brenner
,
M.
,
Probst
,
D.
, and
Som
,
S.
,
2019
, “
CFD-guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer
,”
SAE Int. J. Adv. & Curr. Prac. Mobility
,
1
(
1
), pp.
166
179
. 10.4271/2019-01-0001
54.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
. 10.1080/00102209508907782
55.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable Density Turbulence Flow With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
. 10.1016/0017-9310(96)00117-2
56.
Mehl
,
M.
,
Zhang
,
Z.
,
Wagnon
,
S.
,
Kukkadapu
,
G.
,
Westbrook
,
C. K.
,
Pitz
,
W.
,
Zhang
,
Y.
,
Curran
,
H.
,
Al. Rachidi
,
M.
, and
Sarathy
,
M. S.
,
2018
. “
A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels
,”
10th US National Combustion Meeting
,
College Park, MD
,
Apr. 23–26
, pp.
1
6
.
57.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
. 10.1016/j.proci.2004.08.145
58.
Zheng
,
X. L.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust. Inst
,
31
(
1
), pp.
367
375
. 10.1016/j.proci.2006.07.182
59.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane
,”
Combust. Flame
,
154
(
1
), pp.
153
163
. 10.1016/j.combustflame.2007.11.013
60.
Wu
,
Y.
,
Pal
,
P.
,
Som
,
S.
, and
Lu
,
T.
,
2017
, “
A Skeletal Chemical Kinetic Mechanism for Gasoline and Gasoline/Ethanol Blend Surrogates for Engine CFD Applications
,”
International Conference on Chemical Kinetics
,
Chicago, IL
,
May 21–25
,
Paper No. CFD008
.
61.
CHEMKIN-PRO
2015,
CHEMKIN-PRO 15141
,
Reaction Design
,
San Diego, CA
.
62.
AlAbbad
,
M.
,
Javed
,
T.
,
Khaled
,
F.
,
Badra
,
J.
, and
Farooq
,
A.
,
2017
, “
Ignition Delay Time Measurements of Primary Reference Fuel Blends
,”
Combust. Flame
,
178
, pp.
205
216
. 10.1016/j.combustflame.2016.12.027
63.
Herzler
,
J.
,
Fikri
,
M.
,
Hitzbleck
,
K.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G. T.
,
2007
, “
Shock-tube Study of the Autoignition of n-Heptane/Toluene air Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
149
(
1–2
), pp.
25
31
. 10.1016/j.combustflame.2006.12.015
You do not currently have access to this content.